You're absolutely right. Thank you for pointing that out!
I’ve corrected it, and I was able to finish solving the problem :
---------------------- MODULE Indy ------------------------------------------
EXTENDS Naturals, TLC
tau == [ I |-> 1, G |-> 2, W |-> 4, K |-> 8, L |-> 0 ]
maxt == 15
A == DOMAIN tau
L == "L"
max(S) == CHOOSE x \in S : \A y \in S : y <= x
Max(S) == max({tau[a] : a \in S})
ASSUME
/\ \A x \in A : tau[x] \in Nat
/\ maxt \in Nat
/\ L \in A
VARIABLES left, time
Type ==
/\ left \subseteq A
/\ time \in 0..maxt
Init ==
/\ left = A
/\ time = 0
DeuxActeursTraversent ==
\E a, b \in left \ {L} :
/\ L \in left
/\ left' = left \ {a, b, L}
/\ time' = time + Max({a, b})
UnActeurRevientAvecLampe ==
\E a, b \in A \ (left \union {L}) :
/\ L \in A \ left
/\ left' = left \union {a,b, L}
/\ time' = time + Max({a, b})
Next ==
/\ \/ DeuxActeursTraversent
\/ UnActeurRevientAvecLampe
/\ time' <= maxt
Target ==
/\ left = {}
/\ time <= maxt
=============================================================================
Best regards,
Amine