Dear
Bradbury,
Thank you very much. You are saving my life. God. ^_^
I followed you suggestion, but still had some problems.
Actually, the GLM output total 3 p-value: p_Marker, p-perm_Marker and p-adj_Marker. I checked the TASSEL manual, and find following explanations:
p_marker: p-value from the F-test of each individual marker.
p-perm_Marker: a test of individual markers.
p-adj_Marker: the marker p-value adjusted for multiple tests. The p-adj_Marker value is a permutation test derived using a step-down MinP procedure (Ge et al. 2003) and controls the family-wise error rate (FWER).
I think this is the nominal p-value as you said.
Which p-value is for site-wise permutation test,
and which one is for
experiment-wise test? I have 50 markers and 7 traits. Every trait give 50 p-Marker, 50 p-perm_Marker, and 50 p-adj_Marker. So which p-value(s) I should choose to define the significance, p-perm or p-adj? When we use this to define the significance (for example, 0.05), the nominal p_marker is useless, right?
For MLM, I followed your suggestion, and ran FDR test using qvalue with the alpha 0.1. Is there some criteria for choosing a alpha?
F_Marker |
p_Marker |
Qvalue |
13.1207 |
4.73E-04 |
0.004497 |
13.1207 |
4.73E-04 |
0.004497 |
11.5045 |
0.0011 |
0.055 |
9.5803 |
0.0027 |
0.067069 |
8.5449 |
0.0045 |
0.225 |
7.701 |
0.0069 |
0.243333 |
7.2348 |
0.0085 |
0.087076 |
6.1965 |
0.0146 |
0.243333 |
6.1965 |
0.0146 |
0.243333 |
6.1306 |
0.0151 |
0.187544 |
4.6516 |
0.034 |
0.087076 |
4.6516 |
0.034 |
0.087076 |
The P-value with red color is false positive. Is my understanding is right?
And I found another problem
p-value |
q-value |
0.0085 |
0.087076 |
0.034 |
0.087076 |
0.034 |
0.087076 |
0.0975 |
0.087076 |
0.0975 |
0.087076 |
0.1158 |
0.087076 |
0.1339 |
0.087076 |
0.1373 |
0.087076 |
0.1373 |
0.087076 |
0.1376 |
0.087076 |
0.1412 |
0.087076 |
0.1417 |
0.087076 |
0.1417 |
0.087076 |
0.1417 |
0.087076 |
0.1418 |
0.087076 |
0.1423 |
0.087076 |
0.1455 |
0.087076 |
0.1455 |
0.087076 |
0.1455 |
0.087076 |
0.1455 |
0.087076 |
0.1455 |
0.087076 |
0.1456 |
0.087076 |
0.1494 |
0.087076 |
0.1695 |
0.094675 |
0.1829 |
0.095873 |
0.1929 |
0.095873 |
0.1931 |
0.095873 |
0.3153 |
0.150953 |
0.3335 |
0.154161 |
0.3723 |
0.161426 |
0.3733 |
0.161426 |
0.4274 |
0.179044 |
0.4474 |
0.180577 |
0.458 |
0.180577 |
0.4821 |
0.184648 |
0.517 |
0.192515 |
0.608 |
0.198056 |
0.6563 |
0.198056 |
0.6563 |
0.198056 |
0.6818 |
0.198056 |
0.6825 |
0.198056 |
0.6825 |
0.198056 |
0.6825 |
0.198056 |
0.6825 |
0.198056 |
0.6825 |
0.198056 |
0.6944 |
0.198056 |
0.6944 |
0.198056 |
0.7757 |
0.216635 |
0.9511 |
0.258454 |
0.964 |
0.258454 |
Some non-siginificant p-value have significant Q-value. How to explain that?
在 2012年3月12日星期一UTC+9下午9时42分33秒,Peter Bradbury写道: