They all are not like the ones you already know, right? When we mention the NTFS, FAT32, or HFS file system, we are talking about the file system format of disk drives. You can also take it as disk file system formats.
FAT, also known as File Allocation Table, is a file system developed for personal computers. Originally developed in 1977 for use on floppy disks, it was adapted for use on hard disks and other devices. It is often supported for compatibility reasons by current operating systems for personal computers and many mobile devices and embedded systems, allowing the interchange of data between disparate systems. - by Wikipedia
All you need is to follow these operational processes to complete changing the file system format on your disk. Then, you'll get a desired file system format on your storage devices to start a new task by then.
Changing file system formats on a storage device or Windows computers are easy with the provided methods above. However, what if your computer hard drive or external storage devices contain unknown file system errors and are invalid for executing some specific operations? What can you do?
It doesn't matter that you have no idea about what caused your drive malfunction. You can check the following symptoms, and with one or even two errors on your disk, you'll need a solution to fix the file system error to make the drive work again:
Note that the causes of file system errors are complex, and so do the fixes. If your disk is with some complex file system errors, check the fixes below, and see if you can get an instant solution here:
There are multiple ways to change file systems to NTFS, FAT32, exFAT, or EXT, including File Explorer, Disk Management, and even CMD. However, for the easiest disk format conversion tool, they are not on the top of the list.
Apple File System (APFS), the default file system for Mac computers using macOS 10.13 or later, features strong encryption, space sharing, snapshots, fast directory sizing, and improved file system fundamentals. While APFS is optimized for the Flash/SSD storage used in recent Mac computers, it can also be used with older systems with traditional hard disk drives (HDD) and external, direct-attached storage. macOS 10.13 or later supports APFS for both bootable and data volumes.
Disk formatting is the process of preparing a data storage device such as a hard disk drive, solid-state drive, floppy disk, memory card or USB flash drive for initial use. In some cases, the formatting operation may also create one or more new file systems. The first part of the formatting process that performs basic medium preparation is often referred to as "low-level formatting".[1] Partitioning is the common term for the second part of the process, dividing the device into several sub-devices and, in some cases, writing information to the device allowing an operating system to be booted from it.[1][2] The third part of the process, usually termed "high-level formatting" most often refers to the process of generating a new file system.[1] In some operating systems all or parts of these three processes can be combined or repeated at different levels[a] and the term "format" is understood to mean an operation in which a new disk medium is fully prepared to store files. Some formatting utilities allow distinguishing between a quick format, which does not erase all existing data and a long option that does erase all existing data.
As a general rule,[b] formatting a disk by default leaves most if not all existing data on the disk medium; some or most of which might be recoverable with privileged[c] or special tools.[6] Special tools can remove user data by a single overwrite of all files and free space.[7]
A block, a contiguous number of bytes, is the minimum unit of storage that is read from and written to a disk by a disk driver. The earliest disk drives had fixed block sizes (e.g. the IBM 350 disk storage unit (of the late 1950s) block size was 100 six-bit characters) but starting with the 1301[8] IBM marketed subsystems that featured variable block sizes: a particular track could have blocks of different sizes. The disk subsystems and other direct access storage devices on the IBM System/360 expanded this concept in the form of Count Key Data (CKD) and later Extended Count Key Data (ECKD); however the use of variable block size in HDDs fell out of use in the 1990s; one of the last HDDs to support variable block size was the IBM 3390 Model 9, announced May 1993.[9]
Modern hard disk drives, such as Serial attached SCSI (SAS)[d] and Serial ATA (SATA)[10] drives, appear at their interfaces as a contiguous set of fixed-size blocks; for many years 512 bytes long but beginning in 2009 and accelerating through 2011, all major hard disk drive manufacturers began releasing hard disk drive platforms using the Advanced Format of 4096 byte logical blocks.[11][12]
Floppy disks generally only used fixed block sizes but these sizes were a function of the host's OS and its interaction with its controller so that a particular type of media (e.g., 5-inch DSDD) would have different block sizes depending upon the host OS and controller.
For a standard 1.44 MB floppy disk, low-level formatting normally writes 18 sectors of 512 bytes to each of 160 tracks (80 on each side) of the floppy disk, providing 1,474,560 bytes of storage on the disk.
Physical sectors are actually larger than 512 bytes, as in addition to the 512 byte data field they include a sector identifier field, CRC bytes (in some cases error correction bytes) and gaps between the fields. These additional bytes are not normally included in the quoted figure for overall storage capacity of the disk.
Several freeware, shareware and free software programs (e.g. GParted, FDFORMAT, NFORMAT, VGA-Copy and 2M) allowed considerably more control over formatting, allowing the formatting of high-density 3.5" disks with a capacity up to 2 MB.
Hard disk drives prior to the 1990s typically had a separate disk controller that defined how data was encoded on the media. With the media, the drive and/or the controller possibly procured from separate vendors, users were often able to perform low-level formatting. Separate procurement also had the potential of incompatibility between the separate components such that the subsystem would not reliably store data.[g]
User-instigated low-level formatting (LLF) of hard disk drives was common for minicomputer and personal computer systems until the 1990s. IBM and other mainframe system vendors typically supplied their hard disk drives (or media in the case of removable media HDDs) with a low-level format. Typically this involved subdividing each track on the disk into one or more blocks which would contain the user data and associated control information. Different computers used different block sizes and IBM notably used variable block sizes but the popularity of the IBM PC caused the industry to adopt a standard of 512 user data bytes per block by the middle 1980s.
Starting in the late 1980s, driven by the volume of IBM compatible PCs, HDDs became routinely available pre-formatted with a compatible low-level format. At the same time, the industry moved from historical (dumb) bit serial interfaces to modern (intelligent) bit serial interfaces and word serial interfaces wherein the low-level format was performed at the factory.[17][18] Accordingly, it is not possible for an end user to low-level format a modern hard disk drive.
Modern hard drives can no longer perform post-production LLF, i.e. to re-establish the basic layout of "tracks" and "blocks" on the recording surface. Reinitialization refers to processes that return a disk to a factory-like configuration: no data, no partitioning, all blocks available to use.
When the hard drive's built-in reinitialization function (see above) is unavailable due to driver or system limitations, it is possible to fill the entire disk instead. On older hard drives without bad sector management,[26] a program will also need to check for any damaged sectors and try to spare them out. On newer drives with defect management, reallocated sectors may be left unerased, whereas the built-in re-initialization function will erase them.[27]
In modern times, it is most common to fill hard drives with value of 0x00. One popular method for performing this zero-fill operation on a hard disk is by writing zero-value bytes to the drive using the Unix dd utility with the /dev/zero stream as the input file and the drive itself (or a specific partition) as the output file.[28] This command may take many hours to complete, and will erase all files and file systems.
A value of 0xFF is used on flash disks to reduce wear . The latter value is typically also the default value used on ROM disks (which cannot be reformatted). Some advanced tools allow configuring the fill value.[h]
The present ambiguity in the term low-level format seems to be due to both inconsistent documentation on web sites and the belief by many users that any process below a high-level (file system) format must be called a low-level format. Since much of the low-level formatting process can today only be performed at the factory, various drive manufacturers describe reinitialization software as LLF utilities on their web sites. Since users generally have no way to determine the difference between a complete LLF and reinitialization (they simply observe running the software results in a hard disk that must be high-level formatted), both the misinformed user and mixed signals from various drive manufacturers have perpetuated this error.
Note: whatever possible misuse of such terms may exist, many sites do make such reinitialization utilities available (possibly as bootable floppy diskette or CD image files), to both overwrite every byte and check for damaged sectors on the hard disk.
On MS-DOS, Microsoft Windows, and UNIX-based operating systems (such as BSD, Linux and macOS) this is normally done with a partition editor, such as fdisk, GNU Parted, or Disk Utility. These operating systems support multiple partitions.
aa06259810