Chemical engineering involves the production and manufacturing of products through chemical processes. This includes designing equipment, systems, and processes for refining raw materials and for mixing, compounding, and processing chemicals.
Chemical engineers translate processes developed in the lab into practical applications for the commercial production of products, and then work to maintain and improve those processes. They rely on the main foundations of engineering: math, physics, and chemistry. Biology also plays an increasingly important role.
Broadly, chemical engineers conceive and design processes involved in chemical manufacturing. The main role of chemical engineers is to design and troubleshoot processes for the production of chemicals, fuels, foods, pharmaceuticals, and biologicals, to name just a few. They are most often employed by large-scale manufacturing plants to maximize productivity and product quality while minimizing costs.
Chemical engineers who work in business and management offices often visit research and production facilities. Interaction with other people and team collaboration are critical to the success of projects involving chemical engineering.
Chemical engineers typically work in manufacturing plants, research laboratories, or pilot plant facilities. They work around large-scale production equipment that is housed both indoors and outdoors. Accordingly, they are often required to wear personal protective equipment (e.g., hard hats, goggles, and steel-toe shoes).
Chemical engineering is most often found in large-scale manufacturing plants, where the goal is to maximize productivity and product quality while minimizing costs. The aerospace, automotive, biomedical, electronic, environmental, medical, and military industries use chemical engineering to develop and improve their technical products, such as:
Accept & Close The ACS takes your privacy seriously as it relates to cookies. We use cookies to remember users, better understand ways to serve them, improve our value proposition, and optimize their experience. Learn more about managing your cookies at Cookies Policy.
Chemical engineering is an engineering field which deals with the study of operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials into useful products. Chemical engineering uses principles of chemistry, physics, mathematics, biology, and economics to efficiently use, produce, design, transport and transform energy and materials. The work of chemical engineers can range from the utilization of nanotechnology and nanomaterials in the laboratory to large-scale industrial processes that convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products. Chemical engineers are involved in many aspects of plant design and operation, including safety and hazard assessments, process design and analysis, modeling, control engineering, chemical reaction engineering, nuclear engineering, biological engineering, construction specification, and operating instructions.
Chemical engineers typically hold a degree in Chemical Engineering or Process Engineering. Practicing engineers may have professional certification and be accredited members of a professional body. Such bodies include the Institution of Chemical Engineers (IChemE) or the American Institute of Chemical Engineers (AIChE). A degree in chemical engineering is directly linked with all of the other engineering disciplines, to various extents.
A 1996 article cites James F. Donnelly for mentioning an 1839 reference to chemical engineering in relation to the production of sulfuric acid.[1] In the same paper, however, George E. Davis, an English consultant, was credited with having coined the term.[2] Davis also tried to found a Society of Chemical Engineering, but instead, it was named the Society of Chemical Industry (1881), with Davis as its first secretary.[3][4] The History of Science in United States: An Encyclopedia puts the use of the term around 1890.[5] "Chemical engineering", describing the use of mechanical equipment in the chemical industry, became common vocabulary in England after 1850.[6] By 1910, the profession, "chemical engineer," was already in common use in Britain and the United States.[7]
In the 1940s, it became clear that unit operations alone were insufficient in developing chemical reactors. While the predominance of unit operations in chemical engineering courses in Britain and the United States continued until the 1960s, transport phenomena started to receive greater focus.[8] Along with other novel concepts, such as process systems engineering (PSE), a "second paradigm" was defined.[9][10] Transport phenomena gave an analytical approach to chemical engineering[11] while PSE focused on its synthetic elements, such as those of a control system and process design.[12] Developments in chemical engineering before and after World War II were mainly incited by the petrochemical industry;[13] however, advances in other fields were made as well. Advancements in biochemical engineering in the 1940s, for example, found application in the pharmaceutical industry, and allowed for the mass production of various antibiotics, including penicillin and streptomycin.[14] Meanwhile, progress in polymer science in the 1950s paved way for the "age of plastics".[15]
Concerns regarding large-scale chemical manufacturing facilities' safety and environmental impact were also raised during this period. Silent Spring, published in 1962, alerted its readers to the harmful effects of DDT, a potent insecticide.[16] The 1974 Flixborough disaster in the United Kingdom resulted in 28 deaths, as well as damage to a chemical plant and three nearby villages.[17] 1984 Bhopal disaster in India resulted in almost 4,000 deaths.[citation needed] These incidents, along with other incidents, affected the reputation of the trade as industrial safety and environmental protection were given more focus.[18] In response, the IChemE required safety to be part of every degree course that it accredited after 1982. By the 1970s, legislation and monitoring agencies were instituted in various countries, such as France, Germany, and the United States.[19] In time, the systematic application of safety principles to chemical and other process plants began to be considered a specific discipline, known as process safety.[20]
Advancements in computer science found applications for designing and managing plants, simplifying calculations and drawings that previously had to be done manually. The completion of the Human Genome Project is also seen as a major development, not only advancing chemical engineering but genetic engineering and genomics as well.[21] Chemical engineering principles were used to produce DNA sequences in large quantities.[22]
Chemical engineering design concerns the creation of plans, specifications, and economic analyses for pilot plants, new plants, or plant modifications. Design engineers often work in a consulting role, designing plants to meet clients' needs. Design is limited by several factors, including funding, government regulations, and safety standards. These constraints dictate a plant's choice of process, materials, and equipment.[23]
Plant construction is coordinated by project engineers and project managers,[24] depending on the size of the investment. A chemical engineer may do the job of project engineer full-time or part of the time, which requires additional training and job skills or act as a consultant to the project group. In the USA the education of chemical engineering graduates from the Baccalaureate programs accredited by ABET do not usually stress project engineering education, which can be obtained by specialized training, as electives, or from graduate programs. Project engineering jobs are some of the largest employers for chemical engineers.[25]
A unit operation is a physical step in an individual chemical engineering process. Unit operations (such as crystallization, filtration, drying and evaporation) are used to prepare reactants, purifying and separating its products, recycling unspent reactants, and controlling energy transfer in reactors.[26] On the other hand, a unit process is the chemical equivalent of a unit operation. Along with unit operations, unit processes constitute a process operation. Unit processes (such as nitration, hydrogenation, and oxidation involve the conversion of materials by biochemical, thermochemical and other means. Chemical engineers responsible for these are called process engineers.[27]
Process design requires the definition of equipment types and sizes as well as how they are connected and the materials of construction. Details are often printed on a Process Flow Diagram which is used to control the capacity and reliability of a new or existing chemical factory.
Education for chemical engineers in the first college degree 3 or 4 years of study stresses the principles and practices of process design. The same skills are used in existing chemical plants to evaluate the efficiency and make recommendations for improvements.
Modeling and analysis of transport phenomena is essential for many industrial applications. Transport phenomena involve fluid dynamics, heat transfer and mass transfer, which are governed mainly by momentum transfer, energy transfer and transport of chemical species, respectively. Models often involve separate considerations for macroscopic, microscopic and molecular level phenomena. Modeling of transport phenomena, therefore, requires an understanding of applied mathematics.[28]
Chemical engineers develop economic ways of using materials and energy.[30] Chemical engineers use chemistry and engineering to turn raw materials into usable products, such as medicine, petrochemicals, and plastics on a large-scale, industrial setting. They are also involved in waste management and research.[31][32] Both applied and research facets could make extensive use of computers.[29]
c80f0f1006