Fourier transform is currently implemented in SymPy only for integrable functions. None of those functions is integrable
I beg your pardon ?
>>> from sympy import fourier_transform, exp, cos, sin, integrate
>>> from sympy.abc import t,w,o
>>> integrate(sin(o*t),t)
Piecewise((-cos(o*t)/o, Ne(o, 0)), (0, True))
>>> integrate(cos(o*t),t)
Piecewise((sin(o*t)/o, Ne(o, 0)), (t, True))
>>> integrate(1/t**2,t)
-1/t
>>> integrate(2/t**3,t)
-1/t**2
so SymPy cannot be used find the transform.
Please…
>>> from sympy import fourier_transform, exp, cos, sin, integrate, I, pi, oo, latex
>>> from sympy.abc import t,w,o
>>> integrate(sin(o*t)*exp(-2*I*pi*w*t),(t,-oo,oo))
Piecewise((o/(4*pi**2*w**2*(-o**2/(4*pi**2*w**2) + 1)) + 1/(o*(1 - 4*pi**2*w**2/o**2)), Eq(2*Abs(arg(o)), 0) & (Abs(2*arg(w) + pi) < pi) & (Abs(2*arg(w) - pi) < pi)), (Integral(exp(-2*I*pi*t*w)*sin(o*t), (t, -oo, oo)), True))
>>> integrate(cos(o*t)*exp(-2*I*pi*w*t),(t,-oo,oo))
Piecewise((I/(2*pi*w*(-o**2/(4*pi**2*w**2) + 1)) + 2*I*pi*w/(o**2*(1 - 4*pi**2*w**2/o**2)), Eq(2*Abs(arg(o)), 0) & (Abs(2*arg(w) + pi) < pi) & (Abs(2*arg(w) - pi) < pi)), (Integral(exp(-2*I*pi*t*w)*cos(o*t), (t, -oo, oo)), True))
>>> integrate(1/(t**2)*exp(-2*I*pi*w*t),(t,-oo,oo))
Integral(exp(-2*I*pi*t*w)/t**2, (t, -oo, oo))
>>> integrate(2/(t**3)*exp(-2*I*pi*w*t),(t,-oo,oo))
2*Integral(exp(-2*I*pi*t*w)/t**3, (t, -oo, oo))
So sympy can compute at least the first two, but not via fourier_transform.
BTW, according to Wolfram Alpha,
sin(o*t) has transform -I*sqrt(1/2)*sqrt(pi)*(dirac_delta(o + w) - dirac_delta(-o + w))cos(o*t) has transform sqrt(1/2)*sqrt(pi)*(dirac_delta(o + w) + dirac_delta(-o + w))t^(-2) has transform sqrt(1/2)*sqrt(pi)*w*sgn(w)2/t^3 has transform -I*sqrt(1/2)*sqrt(pi)*w^2*sgn(w)A function f on the real line is said to be integrable if the improper integral of its absolute value from -oo to oo is finite. It does not mean that it has an antiderivative.