A copper tongue cleaner is a handy tool that helps to keep your mouth clean and fresh. You can use it to gently scrape the surface of your tongue. It's designed to remove any bacteria, debris, or dead cells that may be hiding on your tongue, which can cause bad breath or affect your ability to taste food.
Incorporating a copper tongue cleaner into your daily oral hygiene routine is a great way to maintain good mouth health and prevent dental problems. And since it's small and lightweight, you can easily take it with you wherever you go!
Hold one end of the tongue cleaner in each hand and set the rounded part at the back of your tongue. Scrape the tongue from back to front applying light pressure. Scrape down the middle and then each side a few times. Rinse with water after use.
All orders shipped by Beewise are completely plastic-free. We also reuse boxes and filling material as much as possible. Thus, you can be sure that your shipping will have a low impact on the environment.
Messenger RNA (mRNA) vaccines are a familiar concept to many, owing to their role in substantially altering the course of the COVID-19 pandemic and preventing millions of deaths. However, they are not a novel discovery. In fact, the therapeutic potential of mRNA can be linked back to the 1980s when it was hypothesized that mRNA could be used as a drug when delivered to a target via lipid droplets. Since then, mRNA vaccines have been designed to target an array of pathogens, including zika, rabies, influenza, and cytomegalovirus. Figure 1 below outlines the mechanism of action of mRNA vaccines for inducing cell- and antibody-mediated immunity.
The successful application of mRNA vaccine technology to combat COVID-19 would not have been possible without the pioneering work of biochemists, immunologists, and developmental biologists. But the road to success has been long and winding, with decades of dead ends and disputes over technology. Researchers initially found mRNA technology a struggle to work with due to its instability: a challenge that was largely overcome with the development of lipid nanoparticles (LNPs). Encapsulating mRNAs within these protective little fat bubbles enables them to be shuttled to the right place in cells without degrading.
While initial studies into mRNA vaccines looked promising, the cost of optimizing and upscaling vaccine platforms was a major limiting factor to large-scale rollout. Early attempts to develop and commercialize mRNA vaccines were abandoned due to manufacturing challenges, including a vaccine for avian influenza. Many of the candidate vaccines never progressed to in-human studies, and companies such as Shire and Novartis sold their mRNA vaccine portfolios. Companies could not see the economic potential in the technology.
The COVID-19 pandemic had a big impact on vaccine development. Suddenly, mRNA was rapidly and successfully deployed as a vaccine to treat the novel coronavirus, SARS-CoV-2. Through a coordinated research effort, two mRNA vaccine candidates were quickly awarded emergency approval to fight COVID-19. These vaccines offered several advantages over conventional vaccines, including:
The concerted efforts of scientists around the globe during the COVID-19 pandemic has accelerated mRNA vaccine development and helped us to overcome the challenges that hindered early research. The knowledge garnered from the pandemic will be valuable to the field of vaccine technology and the quest in producing future vaccine design using RNA approaches.
Bolstered by the success of the COVID-19 mRNA vaccines, around 90 lead developers are developing mRNA vaccine candidates for a vast array of pathogens. Moderna alone is developing mRNA vaccines to combat Epstein-Barr virus, cytomegalovirus, seasonal flu, and respiratory syncytial virus. Plans to develop mRNA vaccines for Herpes simplex virus, multiple sclerosis, cancer, and human immunodeficiency virus are also in the works. Clinical trials on the first mRNA-based malaria vaccine are set to start this year, with the hopes of tackling this long-neglected disease. The applications of this technology are seemingly limitless.
A glimpse into the pipeline shows that researchers are exploring a range of mRNA technology formats, including modified, non-modified, and self-amplifying mRNAs. While LNP formulation remains the most popular approach for delivering the mRNA to its target, alternative delivery vehicles, such as cationic nano-emulsions, and polymers, are also being explored. Developers believe that these new formulations may bring advantages in stability, potency, immunogenicity, and valency. However, with approximately three-quarters of mRNA vaccine candidates in the preclinical/exploratory phase of development, it will be several years before we see how these new technologies fare in clinical trials.
Though the field of mRNA vaccines has advanced in recent years, several process development challenges remain, such as Plasmid DNA supply, the complexity of in vitro transcription and encapsulation processes, varying mRNA impurity profiles, and the need for ultra-cold storage.
There are other factors that reinforce the need for continued innovation, such as the risk of potential emergence of viral variants (as seen with COVID-19) and the need for high dose administration and subsequent injection site reactions in individuals being vaccinated against SARS-CoV-2.
Despite being an important attribute, minimal research has been performed investigating the stability profile of mRNA drug products, e.g., LNP-mRNA and protein mRNA complexes. include several that investigate the effects of freeze-drying on mRNA integrity. Other approaches include spray-drying mRNA and generating LyoSpheres (freeze-dried droplets with mRNA). This area of research will be crucial for large-scale mRNA vaccine deployment in the future.
As aforementioned, cost was a key limitation to the advancement of mRNA vaccines in the early days, and this is set to remain an important consideration. Currently, relatively high amounts of RNA are required to produce a vaccine, which not only costs time and money, but also increases the likelihood of potential side effects (more on this shortly). Furthermore, the ultra-low temperature storage of -70C is costly, requiring special freezers that may not be normally present at distribution or vaccination centers. Researchers predict that investments in the manufacturing infrastructure and raw materials required for mRNA vaccines will also lower the cost of these vaccines in due time.
One way to navigate the challenges of RNA dose lowering is by using self-amplifying RNA.
It is similar to RNA in terms of structure, but much larger, encoding a replicase that enables amplification of the original stand of RNA upon delivery into the cell. The result is a much higher yield of protein requiring a minimal dose of RNA, leading to additional cost and efficiency benefits. However, one potential issue is the size of the molecule and the impact of this on delivery.