Pure Mathematics Examples

0 views
Skip to first unread message

Kim Veller

unread,
Aug 4, 2024, 11:54:51 PM8/4/24
to steeresadex
Puremathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications, but pure mathematicians are not primarily motivated by such applications. Instead, the appeal is attributed to the intellectual challenge and aesthetic beauty of working out the logical consequences of basic principles.

While pure mathematics has existed as an activity since at least ancient Greece, the concept was elaborated upon around the year 1900,[2] after the introduction of theories with counter-intuitive properties (such as non-Euclidean geometries and Cantor's theory of infinite sets), and the discovery of apparent paradoxes (such as continuous functions that are nowhere differentiable, and Russell's paradox). This introduced the need to renew the concept of mathematical rigor and rewrite all mathematics accordingly, with a systematic use of axiomatic methods. This led many mathematicians to focus on mathematics for its own sake, that is, pure mathematics.


Nevertheless, almost all mathematical theories remained motivated by problems coming from the real world or from less abstract mathematical theories. Also, many mathematical theories, which had seemed to be totally pure mathematics, were eventually used in applied areas, mainly physics and computer science. A famous early example is Isaac Newton's demonstration that his law of universal gravitation implied that planets move in orbits that are conic sections, geometrical curves that had been studied in antiquity by Apollonius. Another example is the problem of factoring large integers, which is the basis of the RSA cryptosystem, widely used to secure internet communications.[3]


It follows that, presently, the distinction between pure and applied mathematics is more a philosophical point of view or a mathematician's preference rather than a rigid subdivision of mathematics.[citation needed]


Ancient Greek mathematicians were among the earliest to make a distinction between pure and applied mathematics. Plato helped to create the gap between "arithmetic", now called number theory, and "logistic", now called arithmetic. Plato regarded logistic (arithmetic) as appropriate for businessmen and men of war who "must learn the art of numbers or [they] will not know how to array [their] troops" and arithmetic (number theory) as appropriate for philosophers "because [they have] to arise out of the sea of change and lay hold of true being."[4] Euclid of Alexandria, when asked by one of his students of what use was the study of geometry, asked his slave to give the student threepence, "since he must make gain of what he learns."[5] The Greek mathematician Apollonius of Perga was asked about the usefulness of some of his theorems in Book IV of Conics to which he proudly asserted,[6]


And since many of his results were not applicable to the science or engineering of his day, Apollonius further argued in the preface of the fifth book of Conics that the subject is one of those that "...seem worthy of study for their own sake."[6]


The term itself is enshrined in the full title of the Sadleirian Chair, "Sadleirian Professor of Pure Mathematics", founded (as a professorship) in the mid-nineteenth century. The idea of a separate discipline of pure mathematics may have emerged at that time. The generation of Gauss made no sweeping distinction of the kind between pure and applied. In the following years, specialisation and professionalisation (particularly in the Weierstrass approach to mathematical analysis) started to make a rift more apparent.


At the start of the twentieth century mathematicians took up the axiomatic method, strongly influenced by David Hilbert's example. The logical formulation of pure mathematics suggested by Bertrand Russell in terms of a quantifier structure of propositions seemed more and more plausible, as large parts of mathematics became axiomatised and thus subject to the simple criteria of rigorous proof.


Generality's impact on intuition is both dependent on the subject and a matter of personal preference or learning style. Often generality is seen as a hindrance to intuition, although it can certainly function as an aid to it, especially when it provides analogies to material for which one already has good intuition.


As a prime example of generality, the Erlangen program involved an expansion of geometry to accommodate non-Euclidean geometries as well as the field of topology, and other forms of geometry, by viewing geometry as the study of a space together with a group of transformations. The study of numbers, called algebra at the beginning undergraduate level, extends to abstract algebra at a more advanced level; and the study of functions, called calculus at the college freshman level becomes mathematical analysis and functional analysis at a more advanced level. Each of these branches of more abstract mathematics have many sub-specialties, and there are in fact many connections between pure mathematics and applied mathematics disciplines. A steep rise in abstraction was seen mid 20th century.


In practice, however, these developments led to a sharp divergence from physics, particularly from 1950 to 1983. Later this was criticised, for example by Vladimir Arnold, as too much Hilbert, not enough Poincar. The point does not yet seem to be settled, in that string theory pulls one way, while discrete mathematics pulls back towards proof as central.


Mathematicians have always had differing opinions regarding the distinction between pure and applied mathematics. One of the most famous (but perhaps misunderstood) modern examples of this debate can be found in G.H. Hardy's 1940 essay A Mathematician's Apology.


It is widely believed that Hardy considered applied mathematics to be ugly and dull. Although it is true that Hardy preferred pure mathematics, which he often compared to painting and poetry, Hardy saw the distinction between pure and applied mathematics to be simply that applied mathematics sought to express physical truth in a mathematical framework, whereas pure mathematics expressed truths that were independent of the physical world. Hardy made a separate distinction in mathematics between what he called "real" mathematics, "which has permanent aesthetic value", and "the dull and elementary parts of mathematics" that have practical use.[8]


I've always thought that a good model here could be drawn from ring theory. In that subject, one has the subareas of commutative ring theory and non-commutative ring theory. An uninformed observer might think that these represent a dichotomy, but in fact the latter subsumes the former: a non-commutative ring is a not-necessarily-commutative ring. If we use similar conventions, then we could refer to applied mathematics and nonapplied mathematics, where by the latter we mean not-necessarily-applied mathematics... [emphasis added][9]


I am in a really bad position, because the people who are in charge of the video want me to explain what a pure mathematician does and how it helps society. They want practical examples, and maybe naming some companies that work with pure mathematicians, and what they do in those companies. All this in only 5 or 10 minutes, so I think that the best I can do is give an example.


Another reason that I am in a bad position: In my University we have the career "Mathematical engineering" and they do mostly applications and some research in numerical analysis and optimization. (*)


I know that pure mathematics is increasing its importance in society every year. Many people in my country think that mathematics has stagnated over time and now only engineers develop science. I think that the most practical thing I can do is give some examples of what we are doing with mathematics today (since 2000).


Here are two recent speakers from our departments lecture series on applied mathematics (the Wing Lectures at U. Rochester). We've had a lot of great lecturers, but these two stick out to me as having an impact on society.


Adrien Treuille -- he works in computer graphics, and his research purely in this areas includes algorithms realistic modeling of crowds, and real time fluid mechanics (e.g. with basically no delay, they can add digital trails of flames behind a race cars on TV). Also, he can construct initial data to make (digital) smoke form specified shapes at specified times.


But, what's even cooler, is that he's collaborated with biologists on an interactive game (called FoldIt) for finding the optimal conformation of proteins. Players get points for moving the protein into better conformations. Humans are way better at this than computers, and they've actually published papers based on conformations discovered by players; in one case, the answer they found had eluded scientists working in the field for at least 10 years! They call this "crowd source science". They've also created another game for engineering shapes with RNA, and the players of that game have discovered things as well.


Gunnar Carlsson -- he is an algebraic topologist who originally worked in K-theory, but shifted to using algebraic topology to understand data. Specifically he was one of (the?) pioneers of persistent homology, which is a way of using topology to understand data. The really great thing about it is that it discovers structure for you--instead of fitting the data to a model, persistent homology discovers the model for you. For instance, they used PH to find the most commonly occurring 9-bit patterns in black and white images, which in theory would allow better image compression that JPEG (but in practical, JPEG is highly optimized, so it would take a lot of work to benefit from this discovery). In another example, they analyzed genomic information from cancer patients and linked it up with survival information; PH discovered the threshold for the expression of a certain gene at which survival drops significantly.

3a8082e126
Reply all
Reply to author
Forward
0 new messages