LoGG tomorrow's paper: Genome modeling and design across all domains of life with Evo 2

2 views
Skip to first unread message

Hannes Stärk

unread,
Mar 9, 2025, 1:00:47 PMMar 9
to lo...@googlegroups.com
Hi together,

Tomorrow's paper: 

Genome modeling and design across all domains of life with Evo 2
 https://www.biorxiv.org/content/10.1101/2025.02.18.638918v1 (Garyk Brixi, Matthew G. Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang, Gabriel A. Gonzalez, Samuel H. King, David B. Li, Aditi T. Merchant, Mohsen Naghipourfar, Eric Nguyen, Chiara Ricci-Tam, David W. Romero, Gwanggyu Sun, Ali Taghibakshi, Anton Vorontsov, Brandon Yang, Myra Deng, Liv Gorton, Nam Nguyen, Nicholas K. Wang, Etowah Adams, Stephen A. Baccus, Steven Dillmann, Stefano Ermon, Daniel Guo, Rajesh Ilango, Ken Janik, Amy X. Lu, Reshma Mehta, Mohammad R.K. Mofrad, Madelena Y. Ng, Jaspreet Pannu, Christopher Ré, Jonathan C. Schmok, John St. John, Jeremy Sullivan, Kevin Zhu, Greg Zynda, Daniel Balsam, Patrick Collison, Anthony B. Costa, Tina Hernandez-Boussard, Eric Ho, Ming-Yu Liu, Thomas McGrath, Kimberly Powell, Dave P. Burke, Hani Goodarzi, Patrick D. Hsu, Brian L. Hie)
All of life encodes information with DNA. While tools for sequencing, synthesis, and editing of genomic code have transformed biological research, intelligently composing new biological systems would also require a deep understanding of the immense complexity encoded by genomes. We introduce Evo 2, a biological foundation model trained on 9.3 trillion DNA base pairs from a highly curated genomic atlas spanning all domains of life. We train Evo 2 with 7B and 40B parameters to have an unprecedented 1 million token context window with single-nucleotide resolution. Evo 2 learns from DNA sequence alone to accurately predict the functional impacts of genetic variation—from noncoding pathogenic mutations to clinically significant BRCA1 variants—without task-specific finetuning. Applying mechanistic interpretability analyses, we reveal that Evo 2 autonomously learns a breadth of biological features, including exon–intron boundaries, transcription factor binding sites, protein structural elements, and prophage genomic regions. Beyond its predictive capabilities, Evo 2 generates mitochondrial, prokaryotic, and eukaryotic sequences at genome scale with greater naturalness and coherence than previous methods. Guiding Evo 2 via inference-time search enables controllable generation of epigenomic structure, for which we demonstrate the first inference-time scaling results in biology. We make Evo 2 fully open, including model parameters, training code, inference code, and the OpenGenome2 dataset, to accelerate the exploration and design of biological complexity.

Speaker:
Garyk Brixi who is a PhD student at Stanford Genetics.

Meeting Details:
Every Monday at 12:00 ET / 9:00 PT / 18:00 CE(S)T.  
https://zoom.us/j/5775722530?pwd=ZzlGTXlDNThhUDZOdU4vN2JRMm5pQT09

Add it to your calendar:
Subscribe via Google Calendar, or subscribe via iCal.
Alternatively, add the events, or add this single event.

Slack Workspace for discussion and paper voting:
https://join.slack.com/t/logag/shared_invite/zt-2zuxi7gd1-rLUgxg6gnCkhO7WlRsyElg

All information: Schedule of upcoming papers, recordings, etc.:
https://portal.valencelabs.com/logg
Reply all
Reply to author
Forward
0 new messages