Following up on this earlier discussion (
https://groups.google.com/forum/#!topic/stan-users/kpV7R6f9x1M), providing the syntax for cross-classified model for an intercept, if one wanted to extend the model to include slopes, would it be a simple matter of extending the use of the index, as follows:
y[n] ~ inv_logit(alpha1[state[n]] + alpha2[sex[n]] + alpha +
beta*income[n] + beta1[state[n]]*income[n] + beta2[sex[n]]);
alpha1 ~ normal(0,sigma_alpha1);
alpha2 ~ normal(0,sigma_alpha2);
sigma_alpha1 ~ ...
sigma_alpha2 ~ ...
alpha ~ ...
beta1 ~ normal(0,sigma_beta1);
beta2 ~ normal(0,sigma_beta2);
sigma_beta1 ~ ...
sigma_beta2 ~ ...