Hi Jeff,
I was looking through the forum to see if I could encounter a similar issue to mine and I am also having high predicted values across my study area. I'm estimating occupancy for southern tamandua across 269 sites and then I want to create a range map for the province. I fit the model and when I predict out I get that the minimum value is 0.53 and mean occupancy is 0.89 I standardized my covariates, though some of them are dummy variables for habitat types. Below I pasted my code, I was wondering if there's something with my model or if it's the way I'm predicting out with the random effect. Any help would be much appreciated.
# model
## formula
T.occ <- ~(1|ID)+scale(fordist)+scale(forcov)+scale(hfp)+scale(roads)+palma+savannah+forest+mosaic+veg_sec+rice
## model
Tout2sp <- spPGOcc(occ.formula = T.occ,
det.formula = det.formula,
data = TASP,
inits = TTI.inits,
n.batch = 100,
batch.length = 1000,
priors = TTI.priors,
cov.model = Tcov.model,
NNGP = TRUE,
n.neighbors = 15,
tuning = TTI.tuning,
n.burn = 20000,
n.thin = 20,
n.chains = 3,
n.omp.threads = 3,
verbose = TRUE,
n.report = 1000)
summary(Tout2sp)
## predict out
coords.0 <- as.matrix(RAS[, c('x', 'y')])
## covariates from the final model
forcov.pred <- (RAS$forcov - mean(GASP$occ.covs[, 3])) / sd(GASP$occ.covs[, 3])
fordist.pred <- (RAS$fordist - mean(GASP$occ.covs[, 4])) / sd(GASP$occ.covs[, 4])
hfp.pred <- (RAS$hfp - mean(GASP$occ.covs[, 5])) / sd(GASP$occ.covs[, 5])
roads.pred <- (RAS$roads - mean(GASP$occ.covs[, 6])) / sd(GASP$occ.covs[, 6])
for.pred <- (RAS$forest)
sav.pred <- (RAS$savannah)
rice.pred <- (RAS$rice)
mos.pred <- (RAS$mosaic)
veg.pred <- (RAS$veg_sec)
pal.pred <- (RAS$palma)
# These are the new intercept and covariate data.
X.0 <- cbind(1,
forcov.pred,
fordist.pred,
hfp.pred,
roads.pred,
for.pred,
sav.pred,
rice.pred,
mos.pred,
veg.pred,
pal.pred)
Tout.pred.sp <- predict(Tout2sp,
X.0,
coords.0,
ignore.RE = TRUE, # site level random effect
verbose= TRUE)