Fine-tune own data?

7 views
Skip to first unread message

Gianluca Miscione

unread,
Jan 4, 2023, 10:40:32 AM1/4/23
to spaghett...@googlegroups.com

I have by far too many documents to remember what to use when.

So, hoping it can make my resources more usable, I asked chatGPT

"how to fine-tune you on my data?"

 

This was its answer:

"Fine-tuning a language model involves training the model on a new dataset that is similar to the task or domain the model will be used for. This can be done by using the pre-trained model as a starting point and further training it on your own data using supervised learning.

To fine-tune a language model using your own data, you will need to do the following:

  1. Preprocess your data: You will need to clean and prepare your data for training. This may involve tokenizing the text, creating a vocabulary, and converting the data into a format that can be used by the model.
  2. Choose a pre-trained language model: You will need to select a pre-trained language model that is appropriate for your task. There are many pre-trained models available, including BERT, GPT-2, and RoBERTa.
  3. Fine-tune the model: You can fine-tune the model by using your own data to update the model's weights and biases. This is typically done using an optimization algorithm, such as stochastic gradient descent (SGD), and a loss function that measures the model's performance on the task.
  4. Evaluate the model: Once you have fine-tuned the model, you will need to evaluate its performance on your own data to determine how well it is able to complete the task.

Fine-tuning a language model can be a useful way to improve its performance on a specific task, but it requires a large amount of training data and can be computationally intensive. Do you have any other questions about fine-tuning a language model?" 

 

 

Reply all
Reply to author
Forward
0 new messages