[Multiple Choice Questions In Computer Science By Ela Kumar 28

0 views
Skip to first unread message

Sharif Garmon

unread,
Jun 13, 2024, 2:06:37 AM6/13/24
to slamboipele

The Office of Naval Research (ONR) organized a STEM Challenge initiative to explore how intelligent tutoring systems (ITSs) can be developed in a reasonable amount of time to help students learn STEM topics. This competitive initiative sponsored four teams that separately developed systems that covered topics in mathematics, electronics, and dynamical systems. After the teams shared their progress at the conclusion of an 18-month period, the ONR decided to fund a joint applied project in the Navy that integrated those systems on the subject matter of electronic circuits. The University of Memphis took the lead in integrating these systems in an intelligent tutoring system called ElectronixTutor. This article describes the architecture of ElectronixTutor, the learning resources that feed into it, and the empirical findings that support the effectiveness of its constituent ITS learning resources.

Multiple Choice Questions In Computer Science By Ela Kumar 28


Download Ziphttps://t.co/F8sgtrRxaF



A fully integrated ElectronixTutor was developed that included several intelligent learning resources (AutoTutor, Dragoon, LearnForm, ASSISTments, BEETLE-II) as well as texts and videos. The architecture includes a student model that has (a) a common set of knowledge components on electronic circuits to which individual learning resources contribute and (b) a record of student performance on the knowledge components as well as a set of cognitive and non-cognitive attributes. There is a recommender system that uses the student model to guide the student on a small set of sensible next steps in their training. The individual components of ElectronixTutor have shown learning gains in previous decades of research.

The ElectronixTutor system successfully combines multiple empirically based components into one system to teach a STEM topic (electronics) to students. A prototype of this intelligent tutoring system has been developed and is currently being tested. ElectronixTutor is unique in its assembling a group of well-tested intelligent tutoring systems into a single integrated learning environment.

Intelligent tutoring systems have been developed for nearly four decades on many STEM topics after the field was christened with the edited volume, Intelligent Tutoring Systems, by Sleeman and Brown (1982). Intelligent tutoring systems (ITSs) are computer learning environments designed to help students master difficult knowledge and skills by implementing powerful intelligent algorithms that adapt to the learner at a fine-grained level and that instantiate complex principles of learning (Graesser et al. in press). An ITS normally works with one student at a time because learners have different levels of mastery, specific deficits in knowledge, and idiosyncratic profiles of cognitive and non-cognitive attributes.

The US Department of Defense has historically played a major role in funding efforts to develop ITS technologies (Chipman 2015). The DoD recognized the need to develop training systems capable of promoting deeper learning on STEM areas that could not be delivered reliably within conventional learning environments. The Office of Naval Research (ONR) consistently supported these research efforts for many decades. More recently, the Army Research Laboratories spearheaded the Generalized Intelligent Framework for Tutoring (Sottilare et al. 2013; www.gifttutoring.org) to scale up these systems for more widespread use. The Advanced Distributed Learning community (2016) has promoted standards for developing and integrating systems. The National Science Foundation (NSF) and Institute for Education Sciences have supported ITSs since the turn of the millennium, as exemplified by the NSF-funded Pittsburgh Science of Learning Center (Koedinger et al. 2012).

One of the persistent challenges with ITS is that it takes a large amount of time and funding to develop these systems and to tune their complex adaptive models through iterative empirical testing. The field has attempted, over many decades, to reduce the development time and cost through authoring tools (Murray et al. 2003; Sottilare et al. 2015). The ideal vision is that an expert on a STEM topic, but without advanced computer expertise, would be able to use authoring tools to provide content on any particular STEM topic and for the tools to generate a complete and runnable ITS from the authored content alone. Although progress in those efforts has resulted in modest reductions in time and costs, the complex intersection of content, pedagogical expertise, and programming expertise that is needed to create an ITS has continued to hinder major reductions in the speed and costs of development.

We are currently collecting empirical data on ElectronixTutor, so empirical findings on learning gains and usage patterns are not yet available. However, each of the core components of ElectronixTutor has been empirically validated across a number of studies, giving us confidence in the efficacy of the system which encapsulates them. There are two primary goals of this article. First, we describe ElectronixTutor and the individual ITS learning resources that form the system (i.e., those developed by the four teams). Second, we review empirical evidence for learning gains on STEM topics that were developed by these teams and applied to the development of ElectronixTutor.

ElectronixTutor focuses on Apprentice Technician Training courses in electronics for Navy trainees who have completed boot camp and are in the process of A-school training conducted by the Navy Educational Training Command. These individuals have above-average scores in the Armed Services Vocational Aptitude Battery, so they have the cognitive capacity to learn electronics. They currently take courses led by a human instructor in a traditional classroom that includes lectures, reading materials, hands-on exercises with circuit boards, and occasional access to human tutors. An instructor typically teaches 25 sailors at a time for 8 h a day for 8 to 12 weeks. ElectronixTutor aims to supplement the classroom instruction with advanced learning environments (ITS and other forms of adaptive learning technologies) that can help the sailors achieve the instructional objectives more efficiently.

Dragoon has a mental model construction and simulation environment (VanLehn et al. 2016a, 2016b; Wetzel et al. 2016). The Dragoon system provides instructional support to help the student construct mental models of circuits with nodes and relations. The student can click on circuit elements and see how changing their values affects the system as a whole. Arizona State University took the lead in developing the Dragoon ITS.

LearnForm is a general learning platform that is used for the creation and delivery of learning tasks that require problem-solving. A problem (learning task) consists of a student being presented with a problem statement, multiple-choice questions, feedback, and finally a summary of a correct answer. The student is free to select the problems to work on, so the system allows self-regulated learning. However, in ElectronixTutor, the problems are systematically assigned under specific conditions that reflect intelligent task selection. Raytheon/BBN took the lead on developing the LearnForm problems.

BEETLE-II is a conversation-based ITS that was previously funded by the ONR on basic electricity and electronics (Dzikovska et al. 2014). BEETLE-II was pitched at a basic, lower-level understanding of circuits, such as open and closed circuits, voltage, and using voltage to find a circuit fault. BEETLE-II improved learning, but it was at the macro-level of discourse and pedagogy rather than the micro-level language adaptation. Therefore, the curriculum and macro-discourse level was incorporated into ElectronixTutor. The Naval Air Warfare Center Training Systems Division provided this content.

A number of conventional learning resources were included in ElectronixTutor in addition to these intelligent, adaptive, and well-crafted ITS learning resources. The conventional resources are not adaptive, but they are under the complete control of the student when studying the material. Thus, they can be especially helpful for students who prefer the free selection and study of materials (i.e., self-regulated learning).

ElectronixTutor includes ample traditional, static documents, including 5000 pages of the Navy Electronics and Electricity Training Series (U.S. Navy 1998), the Apprentice Technical Training (ATT) PowerPoints used by the instructors, and an overview of major electronics concepts that was prepared by the ASU team.

ElectronixTutor automatically presents specific video lessons under various conditions or alternatively permits the student to voluntarily access the material. Some of these videos instruct the students on subject matter content but others train the students on using the learning resources.

A more fine-grained specification of electronic circuit knowledge in ElectronixTutor consists of knowledge components. A topic has an associated set of these knowledge components (KCs). Each topic included at least three KCs to cover the structure of the circuit (or its physics, if the component is a primitive), its behavior, and its function (i.e., what it is typically used for). Example knowledge components for a transistor are CE transistor behavior, CC transistor function, and CE push-pull amplifier structure. The system is not strictly hierarchical because one KC can be linked to multiple topics. Mastery of each KC is assessed by the various learning resources. A particular learning resource may or may not address a particular KC so there is only partial overlap among learning resources in covering the KCs. To the extent that learning resources overlap, we are able to reconstruct, through data mining procedures, which learning resource (LR) is best tailored to particular KCs for particular categories of learners (L). This is essential for determining the right content to present to the right learner at the right time, which is one of the mantras of learning technologies. Consequently, the KC LR L matrix was part of the task analysis of ElectronixTutor.

795a8134c1
Reply all
Reply to author
Forward
0 new messages