Greetings! We heartily invite you to participate in the following shared task for medical text classification in Arabic. The website for the shared task is
Participants will develop systems to perform multi-class classification of Arabic medical text into 82 predefined categories. Each text instance must be assigned to exactly one category represented by an integer label between 0 and 81.
Dataset Information
The dataset consists of authentic medical-domain text in Arabic. Each row in the dataset contains
text: A medical-domain text segment written in Arabic
category: The English name of the corresponding medical category
label: The integer class label (0–81) that participants must predict
There are 82 categories in total, and the dataset exhibits notable class imbalance, making the task both challenging and practically important for real-world healthcare NLP applications.
Here is an example from the dataset:
text
السؤال
-------
السلام عليكم انا مصاب بفقر الدم المنجلي (السكلسل) علمآ بأن نسبة السكلسل 72
فعندما تصبح نسبة الدم 7 فأن الالام تأتي بكثره فما الحل لزيادة نسبة الدم وما
الحل لعلاج...
الجواب
-------
الحل بالابتعاد عن الرضرض النفسية وتقوية المناعة وتناول حمية غذائية متوازنة
غنية بالحديد وعند حدوث نوبات الام سببها ونقص حاد بالخضاب الدموي لايوجد الا
تعويض الدم الناقص..بنقل الدم.
category
Hematological
diseases
label
33
Dataset Links
Evaluation MetricSubmissions will be evaluated using the macro-averaged F1 score across all 82 classes. This metric assigns equal weight to each category, encouraging solutions that perform well even on minority classes.
For more details about the macro F1 score, refer to the
scikit-learn documentation .
ContactFor questions or clarifications, please contact the organising team.
We look forward to your participation in the AbjadNLP Medical Text Classification shared task and to advancing medical NLP for Arabic and other Abjad-script languages.
How to Register1. Complete
the registration form2. Join the
Kaggle competition.
3. Download the dataset (
train,
test without labels) and begin developing your system.
Task Summary• Input: Arabic medical question–answer pair
• Output: One of 82 predefined category labels (0–81)
• Metric: Macro-averaged F1 score
System Description Papers All participating teams are encouraged to submit a short system description paper. Papers will be included in the ACL Anthology and do not require high leaderboard ranking. We welcome creative approaches, analysis, and lessons learned.
For questions or clarifications, please contact the organizing team. Our contact can be found on the shared task website.