Muscle satellite cells contribute to muscle regeneration. We have used a Pax3(GFP/+) mouse line to directly isolate (Pax3)(green fluorescent protein)-expressing muscle satellite cells, by flow cytometry from adult skeletal muscles, as a homogeneous population of small, nongranular, Pax7+, CD34+, CD45-, Sca1- cells. The flow cytometry parameters thus established enabled us to isolate satellite cells from wild-type muscles. Such cells, grafted into muscles of mdx nu/nu mice, contributed both to fiber repair and to the muscle satellite cell compartment. Expansion of these cells in culture before engraftment reduced their regenerative capacity.
Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location.[1] The signals are received via an outdoor parabolic antenna commonly referred to as a satellite dish and a low-noise block downconverter.
A satellite receiver then decodes the desired television program for viewing on a television set. Receivers can be external set-top boxes, or a built-in television tuner. Satellite television provides a wide range of channels and services. It is usually the only television available in many remote geographic areas without terrestrial television or cable television service.
Early systems used analog signals, but modern ones use digital signals which allow transmission of the modern television standard high-definition television, due to the significantly improved spectral efficiency of digital broadcasting. As of 2022, Star One C2 from Brazil is the only remaining satellite broadcasting in analog signals.[4]
A typical satellite has up to 32 Ku-band or 24 C-band transponders, or more for Ku/C hybrid satellites. Typical transponders each have a bandwidth between 27 and 50 MHz. Each geostationary C-band satellite needs to be spaced 2 longitude from the next satellite to avoid interference; for Ku the spacing can be 1. This means that there is an upper limit of 360/2 = 180 geostationary C-band satellites or 360/1 = 360 geostationary Ku-band satellites. C-band transmission is susceptible to terrestrial interference while Ku-band transmission is affected by rain (as water is an excellent absorber of microwaves at this particular frequency). The latter is even more adversely affected by ice crystals in thunder clouds. On occasion, sun outage will occur when the sun lines up directly behind the geostationary satellite to which the receiving antenna is pointed.[10]
The downlink satellite signal, quite weak after traveling the great distance (see path loss), is collected with a parabolic receiving dish, which reflects the weak signal to the dish's focal point.[11] Mounted on brackets at the dish's focal point is a device called a feedhorn or collector.[12] The feedhorn is a section of waveguide with a flared front-end that gathers the signals at or near the focal point and conducts them to a probe or pickup connected to a low-noise block downconverter (LNB).[13] The LNB amplifies the signals and downconverts them to a lower block of intermediate frequencies (IF), usually in the L-band.[13]
The original C-band satellite television systems used a low-noise amplifier (LNA) connected to the feedhorn at the focal point of the dish.[14] The amplified signal, still at the higher microwave frequencies, had to be fed via very expensive low-loss 50-ohm impedance gas filled hardline coaxial cable with relatively complex N-connectors to an indoor receiver or, in other designs, a downconverter (a mixer and a voltage-tuned oscillator with some filter circuitry) for downconversion to an intermediate frequency.[14] The channel selection was controlled typically by a voltage tuned oscillator with the tuning voltage being fed via a separate cable to the headend, but this design evolved.[14]
The advantages of using an LNB are that cheaper cable can be used to connect the indoor receiver to the satellite television dish and LNB, and that the technology for handling the signal at L-band and UHF was far cheaper than that for handling the signal at C-band frequencies.[16] The shift to cheaper technology from the hardline and N-connectors of the early C-band systems to the cheaper and simpler 75-ohm cable and F-connectors allowed the early satellite television receivers to use, what were in reality, modified UHF television tuners which selected the satellite television channel for down conversion to a lower intermediate frequency centered on 70 MHz, where it was demodulated.[16] This shift allowed the satellite television DTH industry to change from being a largely hobbyist one where only small numbers of systems costing thousands of US dollars were built, to a far more commercial one of mass production.[16]
The satellite receiver or set-top box demodulates and converts the signals to the desired form (outputs for television, audio, data, etc.).[17] Often, the receiver includes the capability to selectively unscramble or decrypt the received signal to provide premium services to some subscribers; the receiver is then called an integrated receiver/decoder or IRD.[18] Low-loss cable (e.g. RG-6, RG-11, etc.) is used to connect the receiver to the LNBF or LNB.[13] RG-59 is not recommended for this application as it is not technically designed to carry frequencies above 950 MHz, but may work in some circumstances, depending on the quality of the coaxial wire, signal levels, cable length, etc.[13]
A practical problem relating to home satellite reception is that an LNB can basically only handle a single receiver.[19] This is because the LNB is translating two different circular polarizations (right-hand and left-hand) and, in the case of K-band, two different frequency bands (lower and upper) to the same frequency range on the cable.[19] Depending on which frequency and polarization a transponder is using, the satellite receiver has to switch the LNB into one of four different modes in order to receive a specific "channel".[19] This is handled by the receiver using the DiSEqC protocol to control the LNB mode.[19] If several satellite receivers are to be attached to a single dish, a so-called multiswitch will have to be used in conjunction with a special type of LNB.[19] There are also LNBs available with a multi-switch already integrated.[19] This problem becomes more complicated when several receivers are to use several dishes (or several LNBs mounted in a single dish) pointing to different satellites.[19]
There are five major components in a satellite system: the programming source, the broadcast center, the satellite, the satellite dish, and the receiver. "Direct broadcast" satellites used for transmission of satellite television signals are generally in geostationary orbit 37,000 km (23,000 mi) above the earth's equator.[20] The reason for using this orbit is that the satellite circles the Earth at the same rate as the Earth rotates, so the satellite appears at a fixed point in the sky. Thus satellite dishes can be aimed permanently at that point, and do not need a tracking system to turn to follow a moving satellite. A few satellite TV systems use satellites in a Molniya orbit, a highly elliptical orbit with inclination of +/-63.4 degrees and an orbital period of about twelve hours.
Satellite television, like other communications relayed by satellite, starts with a transmitting antenna located at an uplink facility.[20] Uplink facilities transmit the signal to the satellite over a narrow beam of microwaves, typically in the C-band frequency range due to its resistance to rain fade.[20] Uplink satellite dishes are very large, often as much as 9 to 12 metres (30 to 40 feet) in diameter[20] to achieve accurate aiming and increased signal strength at the satellite, to improve reliability.[20] The uplink dish is pointed toward a specific satellite and the uplinked signals are transmitted within a specific frequency range, so as to be received by one of the transponders tuned to that frequency range aboard that satellite.[20] The transponder then converts the signals to Ku band, a process known as "translation," and transmits them back to earth to be received by home satellite stations.[20]
The downlinked satellite signal, weaker after traveling the great distance (see path loss), is collected by using a rooftop parabolic receiving dish ("satellite dish"), which reflects the weak signal to the dish's focal point.[21] Mounted on brackets at the dish's focal point is a feedhorn[21] which passes the signals through a waveguide to a device called a low-noise block converter (LNB) or low noise converter (LNC) attached to the horn.[21] The LNB amplifies the weak signals, filters the block of frequencies in which the satellite television signals are transmitted, and converts the block of frequencies to a lower frequency range in the L-band range.[21] The signal is then passed through a coaxial cable into the residence to the satellite television receiver, a set-top box next to the television.
The reason for using the LNB to do the frequency translation at the dish is so that the signal can be carried into the residence using cheap coaxial cable. To transport the signal into the house at its original Ku band microwave frequency would require an expensive waveguide, a metal pipe to carry the radio waves.[16] The cable connecting the receiver to the LNB are of the low loss type RG-6, quad shield RG-6, or RG-11.[22] RG-59 is not recommended for this application as it is not technically designed to carry frequencies above 950 MHz, but will work in many circumstances, depending on the quality of the coaxial wire.[22] The shift to more affordable technology from the 50 ohm impedance cable and N-connectors of the early C-band systems to the cheaper 75 ohm technology and F-connectors allowed the early satellite television receivers to use, what were in reality, modified UHF television tuners which selected the satellite television channel for down conversion to another lower intermediate frequency centered on 70 MHz where it was demodulated.[16]
aa06259810