A117382
Primes not expressible as the sum of two triangular numbers.
5, 17, 19, 23, 41, 47, 53, 59, 71, 89, 103, 107, 109, 113, 131, 149, 167, 173, 179, 197, 223, 229, 233, 239, 251, 257, 269, 271, 283, 293, 311, 313, 317, 337, 347, 349, 359, 383, 397, 401, 419, 431, 439, 449, 457, 467, 479, 491, 503, 509, 521, 523, 547, 557
Today I controlled the sequence
Primes of form 3*prime(m) + 2.
11, 17, 23, 41, 53, 59, 71, 89, 113, 131, 179, 239, 251, 269, 293, 311, 383, 419, 449, 491, 503, 521, 593, 599, 683, 701, 719, 773, 809, 881, 941, 953, 1013, 1049, 1061, 1103, 1151, 1193, 1229, 1259, 1301, 1319, 1373, 1439, 1499, 1511, 1571, 1709, 1733, ...
A136082
Son primes of order 5.
3, 11, 17, 23, 41, 53, 59, 107, 131, 167, 173, 179, 191, 257, 263, 269, 389, 401, 431, 461, 467, 479, 521, 563, 569, 599, 647, 653, 677, 683, 719, 773, 821, 839, 857, 887, 947, 971, 1031, 1049, 1061, 1091, 1103, 1151, 1181, 1217, 1223, 1259, 1277, 1301
and I noticed that except for 3 and 11 all the primes belonging to these sequences are part of A117382
Primes not expressible as the sum of two triangular numbers.
Is this true?
See you soon
Davide