It is not clear whether "pandigital" includes the integer part, or only the fractional part, or only the repetend. I have assumed fractional part.
a(2)-a(100): 3, 5, 13, 7, 11, 11, 11, 43, 17, 13, 17, 19, 17, 19, 79, 23, 29, 23, 23, 23, 31, 47, 31, 73, 29, 29, 41, 41, 41, 47, 37, 43, 41, 37, 137, 59, 47, 47, 47, 47, 59, 47, 47, 47, 67, 59, 53, 241, 53, 53, 59, 71, 59, 59, 59, 67, 73, 61, 73, 67, 71, 67, 383, 71, 79, 71, 71, 71, 79, 83, 83, 83, 79, 79, 83, 79, 103, 83, 83, 343, 89, 89, 97, 103, 89, 97, 103, 101, 97, 107, 97, 101, 101, 107, 103, 107, 101, 101, 577
a(n) is composite for n=81, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 484, 529, 576, 625, 729, 784, 841, 961, 1024, 1089, 1156, 1225, 1296, 1444, 1521, 1600, 1681, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500...
a(81)=7^3, a(121)=a(144)=a(169)=5^4, a(196)=3^6
Missing primes: 2, 109, 193, 1033, 1489, 1789, 2161, 2341, 2689, 2713, 3121, 3361, 4801, 5113, 5281, 5641, 5881, 6361, 6553, 6841, 6961, 7561, 8681, 8761, 9241, 9769...
(PARI)
ispandigitalfractionalpart(n,d,b=10)={
my(residueset=0,digitset=0); n %= d;
while(n && !bittest(residueset,n),
residueset += 1<<n;
digitset = bitor(digitset, 1<<(n*b\d));
n = (n*b)%d;
);
digitset==(1<<b)-1
};
a(n,limit=oo)=for(k=n+1,limit,if(ispandigitalfractionalpart(1,k,n),return(k)));