A274967 and A121707

16 views
Skip to first unread message

Davide Rotondo

unread,
Oct 14, 2025, 3:26:51 AM (23 hours ago) Oct 14
to SeqFan

A274967
Odd composite numbers n which are not m-gonal number for 3 <= m < n.
4
77, 119, 143, 161, 187, 203, 209, 221, 299, 319, 323, 329, 371, 377, 391, 407, 413, 437, 473, 493, 497, 517, 527, 533, 539, 551, 581, 583, 589, 611, 623, 629, 649, 667, 689, 707, 713, 731, 737, 749, 767, 779, 791, 799, 803, 817, 851, 869, 893, 899, 901, 913

and 

A121707
Numbers n > 1 such that n^3 divides Sum_{k=1..n-1} k^n = A121706(n).
26
35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 275, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 455, 473, 475, 493, 497, 515, 517, 527, 533, 535, 539, 551, 559, 575, 581, 583, 589, 611

Dear seq fans, what have in common A274967 and A121707? Why one seems to be subsequence of the other?

See you soon 
Davide
Reply all
Reply to author
Forward
0 new messages