First[Sort[asymmetrySort[#] & /@ Join[mirrors, reverses]]]
]
pairs = Subsets[Tuples[Range[-10, 10], {2}], {2}];
invariants = Union[DihedralCanonicalization /@ pairs];
gat = GatherBy[SortBy[invariants, Max[Abs[Flatten[#]]] &],
Max[Abs[Flatten[#]]] &];
mat = Table[Normal[SparseArray[((#[[1]] + k + 1) -> #[[2]]) & /@ Tally[Flatten[gat2[[k]], 1]]]], {k, 1, 10}]
The first few matrices are as seen below. The first row of each matrix is the interesting part.
The first term A014106 a(n) = n*(2*n + 3) 5, 14, 27, 44, 65, 90, 119
The second term a(n) =
−4+4n+4n^2 . 4, 20, 44, 76, 116, 164, 220, 284, 356, 436
The middle term in each row is A005893 2*n^2+2 4, 10, 20, 34, 52, 74, 100, 130, 164, 202
The third term is the second term - 7 (until the middle row is reached)
The fourth term is the third term - 7 (until the middle row is reached)
... and so on.
All other entries in the matrix are based on n.
Sum up all the values in a matrix and divide by 2 to get −1+5 n+4 n^3
{{{5,4,1},{1,2,1},{0,1,1}},
{{14,20,10,2,1},{1,3,3,2,2},{2,2,3,2,2},{0,2,2,2,2},{0,1,2,1,1}},
{{27,44,37,20,3,2,1},{1,4,4,4,3,3,2},{2,3,4,4,3,3,3},{3,3,3,4,3,3,3},{1,3,3,3,3,3,3},{0,3,3,3,2,3,2},{0,1,2,3,2,1,1}},
{{44,76,69,62,34,4,3,2,1},{1,5,5,5,5,4,4,4,2},{2,4,5,5,5,4,4,4,3},{3,4,4,5,5,4,4,4,4},{4,4,4,4,5,4,4,4,4},{2,4,4,4,4,4,4,4,4},{1,4,4,4,4,3,4,4,3},{0,4,4,4,4,3,3,4,2},{0,1,2,3,4,3,2,1,1}},
{{230,436,429,422,415,408,401,394,387,380,202,10,9,8,7,6,5,4,3,2,1},{1,11,11,11,11,11,11,11,11,11,11,10,10,10,10,10,10,10,10,10,2},{2,10,11,11,11,11,11,11,11,11,11,10,10,10,10,10,10,10,10,10,3},{3,10,10,11,11,11,11,11,11,11,11,10,10,10,10,10,10,10,10,10,4},{4,10,10,10,11,11,11,11,11,11,11,10,10,10,10,10,10,10,10,10,5},{5,10,10,10,10,11,11,11,11,11,11,10,10,10,10,10,10,10,10,10,6},{6,10,10,10,10,10,11,11,11,11,11,10,10,10,10,10,10,10,10,10,7},{7,10,10,10,10,10,10,11,11,11,11,10,10,10,10,10,10,10,10,10,8},{8,10,10,10,10,10,10,10,11,11,11,10,10,10,10,10,10,10,10,10,9},{9,10,10,10,10,10,10,10,10,11,11,10,10,10,10,10,10,10,10,10,10},{10,10,10,10,10,10,10,10,10,10,11,10,10,10,10,10,10,10,10,10,10},{8,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10},{7,10,10,10,10,10,10,10,10,10,10,9,10,10,10,10,10,10,10,10,9},{6,10,10,10,10,10,10,10,10,10,10,9,9,10,10,10,10,10,10,10,8},{5,10,10,10,10,10,10,10,10,10,10,9,9,9,10,10,10,10,10,10,7},{4,10,10,10,10,10,10,10,10,10,10,9,9,9,9,10,10,10,10,10,6},{3,10,10,10,10,10,10,10,10,10,10,9,9,9,9,9,10,10,10,10,5},{2,10,10,10,10,10,10,10,10,10,10,9,9,9,9,9,9,10,10,10,4},{1,10,10,10,10,10,10,10,10,10,10,9,9,9,9,9,9,9,10,10,3},{0,10,10,10,10,10,10,10,10,10,10,9,9,9,9,9,9,9,9,10,2},
{0,1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1,1}}}