Once we've chosen A=T(n1)-T(n2), (where n > n1 > n2 > n3 > n4 >= 0),
we must have B=T(n2)-T(n3) such that 2 (A+B) = T(n),
which determines B = T(n)/2 - A and thus T(n3) = T(n2)-B
which therefore must be a triangular number.
(cf. is_A000217(n)= n==(1+n=sqrtint(2*n))*n/2 ) That reduces the number of choices significantly.
In the same vein, we must then have n4 such that T(n3)-T(n4) = A,
so T(n4) = T(n3) - A must also be a triangular number.
T(n)=n*(n+1)/2
check(n,Tn=T(n))={ Tn%2==0 && forstep(n1=n-1,3,-1, T1=T(n1); forstep(n2=n1-1,2,-1,
(B = Tn/2 - A = T1 - T2 = T(n2)) < 3 && break ; T2-B > 0 || next ;
(1+n3=sqrtint(2*T3 = T2-B))*n3==2*T3 || next; T3-A < 0 && next ;
(1+n4=sqrtint(2*T4 = T3-A))*n4==2*T4 && return([n4, n3, n2, n1, n])))}
for(n=1,99, n%100 || print1([n]); (t=check(n)) && print(t" T's: "apply(T,t)))
[2, 4, 6, 7, 8] T's: [3, 10, 21, 28, 36] : Indeed : 7 + 11 + 7 + 11 = 28
[3, 9, 11, 14, 15] T's: [6, 45, 66, 105, 120] : Here, 39 + 21 + 39 + 21 = 120
[5, 11, 15, 18, 20] T's: [15, 66, 120, 171, 210]
[2, 6, 17, 18, 24] T's: [3, 21, 153, 171, 300]
[6, 16, 20, 25, 27] T's: [21, 136, 210, 325, 378]
[8, 18, 24, 29, 32] T's: [36, 171, 300, 435, 528]
[13, 15, 28, 29, 35] T's: [91, 120, 406, 435, 630]
[23, 26, 36, 38, 39] T's: [276, 351, 666, 741, 780]
[18, 25, 36, 40, 44] T's: [171, 325, 666, 820, 990]
[12, 17, 36, 38, 48] T's: [78, 153, 666, 741, 1176]
[12, 30, 38, 47, 51] T's: [78, 465, 741, 1128, 1326]
[13, 28, 41, 48, 55] T's: [91, 406, 861, 1176, 1540]
[27, 32, 48, 51, 56] T's: [378, 528, 1176, 1326, 1596]
[15, 37, 47, 58, 63] T's: [120, 703, 1128, 1711, 2016]
[17, 39, 51, 62, 68] T's: [153, 780, 1326, 1953, 2346]
[32, 44, 62, 69, 75] T's: [528, 990, 1953, 2415, 2850]
[46, 55, 73, 79, 80] T's: [1081, 1540, 2701, 3160, 3240]
[35, 44, 69, 74, 84] T's: [630, 990, 2415, 2775, 3570]
[41, 51, 74, 80, 87] T's: [861, 1326, 2775, 3240, 3828]
[23, 53, 69, 84, 92] T's: [276, 1431, 2415, 3570, 4278]
[11, 23, 68, 71, 95] T's: [66, 276, 2346, 2556, 4560]
[58, 67, 91, 97, 99] T's: [1711, 2278, 4186, 4753, 4950]
...
-M.