they are respectively (where [n,k] = |Stirling1(n,k)| = Stirling1(n,k)*(-1)^(n-k) and [n,k]_r the
r-Stirling numbers)
A051142(n,k) = [n,k]*(-4)^(n-k).
A051150(n,k) = [n,k]*(-5)^(n-k).
A051151(n,k) = [n,k]*(-6)^(n-k).
A051186(n,k) = [n,k]*(-7)^(n-k).
A051187(n,k) = [n,k]*(-8)^(n-k).
A051231(n,k) = [n,k]*(-9)^(n-k).
A048176(n,k) = [n,k]*(-10)^(n-k).
A049444(n,k) = [n+2,k+2]_2 * (-1)^(n-k).
A049458(n,k) = [n+3,k+3]_3 * (-1)^(n-k).
A049459(n,k) = [n+4,k+4]_4 * (-1)^(n-k).
A049460(n,k) = [n+5,k+5]_5 * (-1)^(n-k).
A051338(n,k) = [n+6,k+6]_6 * (-1)^(n-k).
A051339(n,k) = [n+7,k+7]_7 * (-1)^(n-k).
A051379(n,k) = [n+8,k+8]_8 * (-1)^(n-k).
A051380(n,k) = [n+9,k+9]_9 * (-1)^(n-k).
A051523(n,k) = [n+10,k+10]_10 * (-1)^(n-k).
and finally,
A094646(n,k)
= [n-2,k-2]_-2
= [3,3-n+k]_{3-n} * (-1)^(n-k)
= {2-k,2-n}_3
= {n-k-3,-3}_{n-2} * (-1)^(n-k)
due to the fourfold reflection identities for r-Stirling numbers (see
this section of one of my pages); none of these have a direct combinatorial interpretation, so I don't think there is anything more meaningful than the existing description
T(n,k) = 2*abs(S1(n-2,k)) - 3*abs(S1(n-2,k-1)) + abs(S1(n-2,k-2)), n >= 2, with S1(n,k) = Stirling1(n,k) = A048994(n,k). to mention