I got this idea for these sequences from a comment by Daniel in a previous email. In binary, start with two 1s and fill the intervening positions with 0s at prime-indexed positions and 1s elsewhere. We get two different sequences based on whether we count the positions from the right or the left. In both cases, some of these numbers are primes
Counting from the right: the 1st (5), 3rd (41), 6th (11177), 12th (204811725737), and 48th (20218313985789220934578265728514876480355276692856785622098635320233) terms are primes.
Counting from the left, the 1st (5), 3rd (37), 4th (149), 7th (153437), 10th (628479869), and 21st (11056334789265976156021) are primes.
I would really appreciate it if you could tell me if these two sequences (and the initial sequences below) are suitable for the OEIS. Also, please help confirm the terms.
5
9
37
149
2397
9589
153437
613749
9819997
628479869
2513919477160890846589
2574253545437
10297014181749
164752226907997
10544142522111869
674825121415159677
2699300485660638709
172755231082280877437
2764083697316494039005
11056334789265976156021
707605426513022473985405
11321686824208359583766493
724587956749335013361055613
185494516927829763420430237181
2967912270845276214726883794909
11871649083381104858907535179637
189946385334097677742520562874205
759785541336390710970082251496821
12156568661382251375521316023949149
199173220948086806536541241736382873597
3186771535169388904584659867782125977565
203953378250840889893418231538056062564221
815813513003363559573672926152224250256885
835393037315444285003441076379877632263051261
3341572149261777140013764305519510529052205045
213860617552753736960880915553248673859341122941
13687079523376239165496378595407915126997831868285
218993272374019826647942057526526642031965309892573
14015569431937268905468291681697705090045779833124733
896996443643985209949970667628653125762929909319982973
3587985774575940839799882670514612503051719637279931893
3674097433165763419955079854606963203124960908574650259453
14696389732663053679820319418427852812499843634298601037813
235142235722608858877125110694845644999997498148777616605021
940568942890435435508500442779382579999989992595110466420085
3852570390079223543842817813624351047679959009669572470456672253
15780128317764499635580181764605341891297112103606568838990529552381
252482053084231994169282908233685470260753793657705101423848472838109
1009928212336927976677131632934741881043015174630820405695393891352437