The Galaxy Note 7 launch invite was leaked recently, and it is being reported that there will be only one variant of the device, either the curved screen variant or the one with a flat display. Now, a new report claims that Samsung will only launch the curved screen variant of the Galaxy Note 7 (or the Galaxy Note 6), and that it will be released in the Netherlands and other markets in Europe.
Galaxy Note 7 will have a 5.8-inch display with dual curved screen, and a 4000mAh battery. The report also reveals that unlike last year, this year the Note phablet will be launched in the Netherlands market.
When it comes to specifications and feature on its devices, Samsung's become a very changed company compared to a couple of years back. The shift in the Korean manufacturing giant's thinking can be said to have started with the Galaxy Note series, with the Galaxy Note Edge coming with a unique curved design, that was expanded on the Galaxy S6 Edge launched last year.
The larger real estate of Galaxy Note 6 will enable developers to put more options for the user in the curved edge screen, and when more reports come in, we will update you guys on whether or not the device will come with a single curved edge screen or a dual one. Till then, stay tuned for more updates.
According to SamMobile(Opens in a new tab), which has a reliable track record when it comes to Samsung-related rumors, Samsung is testing two variants of the Galaxy Note 6, one with a curved screen and one with a flat screen -- both have Quad HD (2,560 x 1,440) resolution.
But unlike last year, where the Korean electronics giant launched the Galaxy Note 5 and Galaxy S6 Edge+, both with identical tech specs, with the only differences being the Note 5's stylus and flat screen and the S6 Edge+'s dual curved glass sides, there will only be one model this year.
We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be 1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
We report on the X-ray observation of the Seyfert 1 galaxy ESO323-G077 performed with XMM-Newton. The EPIC spectra show a complex spectrum with conspicuous absorption and emission features. The continuum emission can be modelled with a power law with an index of 1.99 +/- 0.02 in the whole XMM-Newton energy band, marginally consistent with typical values of type I objects. An absorption component with an uncommonly high equivalent hydrogen column (nH = 5.82+0.12-0.11 1022cm-2) is affecting the soft part of the spectrum. Additionally, two warm absorption components are also present in the spectrum. The lower ionized one, mainly imprinting the soft band of the spectrum, has an ionization parameter of logU = 2.14+0.06-0.07 and an outflowing velocity of v = 3200+600-200kms-1. Two absorption lines located at 6.7 and 7.0keV can be modelled with the highly ionized absorber. The ionization parameter and outflowing velocity of the gas measured are logU = 3.26+0.19-0.15 and v = 1700+600-400kms-1, respectively. Four emission lines were also detected in the soft energy band. The most likely explanation for these emission lines is that they are associated with an outflowing gas with a velocity of 2000kms-1. The data suggest that the same gas which is causing the absorption could also being responsible of these emission features. Finally, the XMM-Newton spectrum shows the presence of a relativistic iron emission line likely originated in the accretion disc of a Kerr black hole with an inclination of 25. We propose a model to explain the observed X-ray properties which invokes the presence of a two-phase outflow with cone-like structure and a velocity of the order of 2000- 4000kms-1. The inner layer of the cone would be less ionized, or even neutral, than the outer layer. The inclination angle of the source would be lower than the opening angle of the outflowing cone. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and
Context. In 2014, spectral observations of separate areas on the disk of Jupiter in the visible spectrum were made by means of the echelle-spectrometer installed in Cassegrain 2-meter mirror telescope's focus of Shamakhi Astrophysical Observatory. The echellespectrometer equipped with the CCD camera provided spectral resolution R=14000 with dispersion of 10 Å/mm. Aims. Features of the intensity change of the ammonia absorption lines at 6475 Å were studied for the spectra of different details of Jupiter's disk. The absorption line 6495.7 Å for ammonia was found only in the GRS spectrum of Jupiter. Methods. Earlier that line was noted in the laboratory spectrum of Giver; it was absent in the spectrum obtained by Mason; in the theoretical spectrum of ammonia it was noted at 6495.9 Å. Comparison of characteristics of the ammonia line in the spectra of various details allows investigating horizontal inhomogeneity of ammonia distribution on the Jupiter's disk. Results.
The controversy over whether the absorption spectrum in QSOs is intrinsic or extrinsic is approached with attention to the peak of redshifts at z = 1.95. Also considered are the line-locking and the intervening galaxy hypotheses. The line locking hypothesis is based on observations that certain ratios found in absorption line QSOs are preferred, and leads inevitably to the conclusion that the absorption line systems are intrinsic. The intervening galaxy hypothesis is based on absorption redshifts resulting from given absorption cross-sections of galactic clusters and the intergalactic medium, and would lead to the theoretical conclusion that most QSOs show strong absorption, a conclusion which is not supported by empirical data. The 1.95 peak, on the other hand, is most probably an intrinsic property of QSOs. The peak is enhanced by redshift, and it is noted that both an emission and an absorption redshift peak are seen at 1.95.
We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.
There is increasing evidence that the highly ionized multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called warm absorbers. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds that are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line-of-sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result that can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.
Context. Transmission spectroscopy has become a prominent tool for characterizing the atmospheric properties on close-in transiting planets. Recent observations have revealed a remarkable diversity in exoplanet spectra, which show absorption signatures of Na, K and H2O, in some cases partially or fully attenuated by atmospheric aerosols. Aerosols (clouds and hazes) themselves have been detected in the transmission spectra of several planets thanks to wavelength-dependent slopes caused by the particles' scattering properties. Aims: We present an optical 550-960 nm transmission spectrum of the extremely irradiated hot Jupiter WASP-103b, one of the hottest (2500 K) and most massive (1.5 MJ) planets yet to be studied with this technique. WASP-103b orbits its star at a separation of less than 1.2 times the Roche limit and is predicted to be strongly tidally distorted. Methods: We have used Gemini/GMOS to obtain multi-object spectroscopy throughout three transits of WASP-103b. We used relative spectrophotometry and bin sizes between 20 and 2 nm to infer the planet's transmission spectrum. Results: We find that WASP-103b shows increased absorption in the cores of the alkali (Na, K) line features. We do not confirm the presence of any strong scattering slope as previously suggested, pointing towards a clear atmosphere for the highly irradiated, massive exoplanet WASP-103b. We constrain the upper boundary of any potential cloud deck to reside at pressure levels above 0.01 bar. This finding is in line with previous studies on cloud occurrence on exoplanets which find that clouds dominate the transmission spectra of cool, low surface gravity planets while hot, high surface gravity planets are either cloud-free, or possess clouds located below the altitudes probed by transmission spectra. The spectrophotometric time series data are only available at the CDS via anonymous ftp to -strasbg.fr ( ) or via http
eebf2c3492