af-packet:
- interface: eth2
# Number of receive threads (>1 will enable experimental flow pinned
# runmode)
threads: 1
# Default clusterid. AF_PACKET will load balance packets based on flow.
# All threads/processes that will participate need to have the same
# clusterid.
cluster-id: 99
# Default AF_PACKET cluster type. AF_PACKET can load balance per flow or per hash.
# This is only supported for Linux kernel > 3.1
# possible value are:
# * cluster_round_robin: round robin load balancing
# * cluster_flow: all packets of a given flow are send to the same socket
# * cluster_cpu: all packets treated in kernel by a CPU are send to the same socket
cluster-type: cluster_flow
# In some fragmentation case, the hash can not be computed. If "defrag" is set
# to yes, the kernel will do the needed defragmentation before sending the packets.
defrag: yes
# To use the ring feature of AF_PACKET, set 'use-mmap' to yes
use-mmap: yes
- interface: eth3
# Number of receive threads (>1 will enable experimental flow pinned
# runmode)
threads: 1
# Default clusterid. AF_PACKET will load balance packets based on flow.
# All threads/processes that will participate need to have the same
# clusterid.
cluster-id: 99
# Default AF_PACKET cluster type. AF_PACKET can load balance per flow or per hash.
# This is only supported for Linux kernel > 3.1
# possible value are:
# * cluster_round_robin: round robin load balancing
# * cluster_flow: all packets of a given flow are send to the same socket
# * cluster_cpu: all packets treated in kernel by a CPU are send to the same socket
cluster-type: cluster_flow
# In some fragmentation case, the hash can not be computed. If "defrag" is set
# to yes, the kernel will do the needed defragmentation before sending the packets.
defrag: yes
# To use the ring feature of AF_PACKET, set 'use-mmap' to yes
use-mmap: yes