if(!raster::canProcessInMemory(raster::stack(rstSegm, rstFeatures[[1]]), n = 2))
stop("Not enough memory to process the input raster files when using option bylayer!")
print(segmRst)
print(trainDataRst)
print(classificationFeatures)
Hi Angélica,
Thanks for the feedback.
Indeed these images (with roughly 280 million pixels) will require processing by tiles which is currently under development in SegOptim. I will keep you posted on advances on this front. Currently these features are being implemented and tested on the experimental build of the package but not yet released.
Hi,
This is what I got...
> print(segmRst)
class : RasterLayer
dimensions : 15105, 18540, 280046700 (nrow, ncol, ncell)
resolution : 0.3, 0.3 (x, y)
extent : 437390.4, 442952.4, 6174744, 6179276 (xmin, xmax, ymin, ymax)
crs : +proj=utm +zone=55 +south +ellps=GRS80 +units=m +no_defs
source : C:/Scripts/SegOptim/data/segmRaster_MS_R.tif
names : segmRaster_MS_R
values : 1, 624470 (min, max)
> print(trainDataRst)
class : RasterLayer
dimensions : 15105, 18540, 280046700 (nrow, ncol, ncell)
resolution : 0.3, 0.3 (x, y)
extent : 437390.4, 442952.4, 6174744, 6179276 (xmin, xmax, ymin, ymax)
crs : +proj=utm +zone=55 +south +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
source : C:/Scripts/SegOptim/data/TRAIN_AREAS/Citrus_NSW_Calibration_TCA_Training_v3.tif
names : Citrus_NSW_Calibration_TCA_Training_v3
values : 0, 1 (min, max)
> print(classificationFeatures)
class : RasterStack
dimensions : 15105, 18540, 280046700, 22 (nrow, ncol, ncell, nlayers)
resolution : 0.3, 0.3 (x, y)
extent : 437390.4, 442952.4, 6174744, 6179276 (xmin, xmax, ymin, ymax)
crs : +proj=utm +zone=55 +south +ellps=GRS80 +units=m +no_defs
names : NDI_1, NDI_2, NDI_3, NDI_4, NDI_5, NDI_6, NDI_7, NDI_8, NDI_9, NDI_10, NDI_11, NDI_12, NDI_13, NDI_14, SpecBand_1, ...
min values : -0.99122804, -0.97282606, -0.86203539, -1.77049184, -0.86842108, -0.74736840, -0.77639753, -0.82300884, -8.74870396, -15.48746777, -0.31707317, -376.00000000, 0.02717391, 0.09708738, 138.00000000, ...
max values : 0.5231054, 3.5411763, 28.9137459, 0.5206897, 0.6102418, 0.5440932, 0.9961832, 0.9976190, 33.7906075, 25.8950958, 0.9941691, 376.0000000, 4.5411763, 839.0000000, 692.0000000, ...
Regards,
L.A. Suarez
Gracias, Gracias, Gracias