I'm struggling to replicate results from a previous analysis. I suppose
it's normal for density estimates to change slightly between analyses?
But there's some major problems:
-Top density model ranked in AIC changes when analysis is repeated.
-The
s.e. and CL estimates (at different levels of the covariate) are so
large it isn't tenable for publication anymore. eg. at a density
estimate = 0.0003, s.e.=6e^23.
I didn't have this issue
originally back in March 2022 when I produced these results for my
thesis. I might have lost some important piece of the code in my attempt
to tidy it between now and then? Or maybe some
R/Rstudio/secr/dependency updates since then might have thrown off the
analysis?
My complete code is below. Please let me know if you notice anything that seems odd.
markocc=c(1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0))
Ald21CH <- addSightings(Ald21CH, nonID="TmAld21.txt",
unmarked="TuAld21.txt", uncertain="TnAld21.txt")
mask <- make.mask(traps(Ald21CH))
UsedHabitat2 <- rgdal::readOGR(dsn=".", layer="Useable_corrected")
traps<- traps(Ald21CH)
clippedmask <- make.mask(traps(Ald21CH), buffer=347, spacing=15, type="trapbuffer", poly=UsedHabitat2, poly.habitat=TRUE)
DENScov5 <- rgdal::readOGR(dsn=".", layer="NewCov_Burn_2021", stringsAsFactors =FALSE)
DENScov5@data$Ceanothus2 <- as.factor(DENScov5@data$Ceanothus2)
DENScov5@data$Canopy3cat <- as.factor(DENScov5@data$Canopy3cat)
clippedmask <- addCovariates (clippedmask, DENScov5, columns = 'Ceanothus2', strict = FALSE, replace = FALSE)
clippedmask <- addCovariates (clippedmask, DENScov5, columns = 'Canopy3cat', strict = FALSE, replace = FALSE)
base.args
<- list(capthist = Ald21CH, mask = clippedmask, trace = FALSE,
verify=TRUE, method='Nelder-Mead', details = list(nsim = 10000))
args.0 <- c(base.args, model = D ~ 1, g0 ~ 1)
args.Dcan <- c(base.args, model = D ~ Canopy3cat, g0 ~ 1)
args.Dcean <- c(base.args, model = D ~ Ceanothus2, g0 ~ 1)
args.Dceancan <- c(base.args, model = D ~ Ceanothus2:Canopy3cat, g0 ~ 1)
args.Dadd <- c(base.args, model = D ~ Ceanothus2+Canopy3cat, g0 ~ 1)
arglist <- list(null = args.0, Dcan = args.Dcan, Dcean = args.Dcean, Dceancan = args.Dceancan, Dadd = args.Dadd)
fits <- par.secr.fit(arglist,ncores = 4)
covAIC <- AIC(fits, criterion = "AIC", verify=TRUE)
Canopy3cat <- c(0,0,1,1,2,2)
Ceanothus2 <- c(4,5,4,5,4,5)
Canopy3cat <- as.factor(Canopy3cat)
Ceanothus2 <- as.factor(Ceanothus2)
covs <- data.frame(Canopy3cat, Ceanothus2)
covs
CIa21 <- predict(fits$fit.Dadd, newdata=covs,
realnames=NULL, type=c("response"),
se.fit=TRUE, alpha=0.05, savenew=FALSE)
*This issue was cross-posted at phidot.org for expediency - working within a quickly closing revision window.*
Any help is greatly appreciated.
demarsea
Posts: 4Joined: Wed Mar 17, 2021 12:23 pm