Hi Nath,
your message does not quite make sense to me, I'm sorry! If I understood correctly, you want to increase the resolution in the time domain to be able to see the nulls. Again, you can do that by increasing the frequency span. I don't see the need for interpolation or curve fitting.
Maybe it's better to discuss a real example. See this these four cases with the same 3rd order Chebyshev bandpass (code below).
Regards, Vincent
Case 1:
Case 2:
Case 3:
Case 4:
import matplotlib.pyplot as mplt
import skrf
c1 = 1.729e-12
c2 = 9.172e-12
c3 = c1
l1 = 24.42e-9
l2 = 4.603e-9
l3 = l1
freq = skrf.Frequency(start=100e6, stop=20.1e9, unit='Hz', npoints=2001)
f_span = freq.span
df = freq.df[0]
t_span = 1 / df
tl_media = skrf.DefinedGammaZ0(freq, z0=50, gamma=1j*freq.w/skrf.c)
nw_c1 = tl_media.capacitor(c1, name='C1')
nw_c2 = tl_media.capacitor(c2, name='C2')
nw_c3 = tl_media.capacitor(c3, name='C3')
nw_l1 = tl_media.inductor(l1, name='L1')
nw_l2 = tl_media.inductor(l2, name='L2')
nw_l3 = tl_media.inductor(l3, name='L3')
nw_gnd = skrf.Circuit.Ground(freq, name='GND')
nw_port1 = skrf.Circuit.Port(freq, name='port1', z0=50)
nw_port2 = skrf.Circuit.Port(freq, name='port2', z0=50)
netlist = [[(nw_port1, 0), (nw_l1, 0)],
[(nw_l1, 1), (nw_c1, 0)],
[(nw_c1, 1), (nw_l2, 1), (nw_c2, 1), (nw_c3, 0)],
[(nw_c3, 1), (nw_l3, 0)],
[(nw_l3, 1), (nw_port2, 0)],
[(nw_l2, 0), (nw_c2, 0), (nw_gnd, 0)]]
cir = skrf.Circuit(netlist)
nw_bandpass = cir.network.extrapolate_to_dc()
fig, ax = mplt.subplots(2, 1)
ax[0].set_title(f'f_span = {f_span * 1e-6} MHz, df = {df * 1e-6} MHz')
ax[1].set_title(f't_span = {t_span * 1e9} ns, dt = {dt * 1e9} ns')
nw_bandpass.plot_s_db(0, 0, ax=ax[0])
nw_bandpass.plot_s_db(1, 0, ax=ax[0])
nw_bandpass.plot_s_time_db(0, 0, ax=ax[1])
mplt.tight_layout()
mplt.show()