total:750156
user-movie-ratings
i used item-based recommender
my code:
from scikits.crab.metrics import pearson_correlation, cosine_distances, euclidean_distances
from scikits.crab.similarities import ItemSimilarity
from scikits.crab.models import MatrixPreferenceDataModel
model = MatrixPreferenceDataModel(data_movies)
item_sim_pearson = ItemSimilarity(model, pearson_correlation)
from scikits.crab.recommenders.knn import ItemBasedRecommender
item_recommender = ItemBasedRecommender(model, item_sim_pearson, with_preference=True)
i want to predict the (user , movie ) rating,
so my test data is like this:
ID,user,movie
895537,5412,2683
total:250000
when i predict the rating, the program is so slow,
def predict(x):
return item_recommender.estimate_preference(x.user, x.movie)
test_data['prediction'] = test_data.apply(predict, axis=1)
test_data is a dataframe of my test data...