anti...@math.uni.wroc.pl schrieb:
Yes, when copying the discriminant formula, I accidentally dropped the
numerical factor from the leading term 256*a^3*e^3 for a quartic
written a*x^4 + b*x^3 + c*x^2 + d*x + e = 0. For the corrected
restriction 0 < tt < 27/256, Derive 6.10 produces the real solutions:
vv = SQRT(2)*3^(3/4)*SQRT(SQRT(8*2^(1/3)*tt^(2/3)*(3*SQRT(3) -
SQRT(27 - 256*tt))^(2/3) - 2*2^(2/3)*tt^(1/3)*(2*2^(2/3)*tt^(1/3)*
(SQRT(27 - 256*tt) + 3*SQRT(3))^(1/3) + SQRT(3))*(3*SQRT(3) -
SQRT(27 - 256*tt))^(1/3) + 2*2^(2/3)*tt^(1/3)*(SQRT(27 - 256*tt) +
3*SQRT(3))^(1/3)*(2*2^(2/3)*tt^(1/3)*(SQRT(27 - 256*tt) +
3*SQRT(3))^(1/3) - SQRT(3)) + 3) - 2^(2/3)*tt^(1/3)*(3*SQRT(3) -
SQRT(27 - 256*tt))^(1/3) - 2^(2/3)*tt^(1/3)*(SQRT(27 - 256*tt) +
3*SQRT(3))^(1/3) + SQRT(3))/12 - 3^(3/4)*(SQRT(2*2^(2/3)*tt^(1/3)*
(3*SQRT(3) - SQRT(27 - 256*tt))^(1/3) + 2*2^(2/3)*tt^(1/3)*(SQRT(27 -
256*tt) + 3*SQRT(3))^(1/3) + SQRT(3)) - 3*3^(1/4))/12
vv = - SQRT(2)*3^(3/4)*SQRT(SQRT(8*2^(1/3)*tt^(2/3)*(3*SQRT(3) -
SQRT(27 - 256*tt))^(2/3) - 2*2^(2/3)*tt^(1/3)*(2*2^(2/3)*tt^(1/3)*
(SQRT(27 - 256*tt) + 3*SQRT(3))^(1/3) + SQRT(3))*(3*SQRT(3) -
SQRT(27 - 256*tt))^(1/3) + 2*2^(2/3)*tt^(1/3)*(SQRT(27 - 256*tt) +
3*SQRT(3))^(1/3)*(2*2^(2/3)*tt^(1/3)*(SQRT(27 - 256*tt) +
3*SQRT(3))^(1/3) - SQRT(3)) + 3) - 2^(2/3)*tt^(1/3)*(3*SQRT(3) -
SQRT(27 - 256*tt))^(1/3) - 2^(2/3)*tt^(1/3)*(SQRT(27 - 256*tt) +
3*SQRT(3))^(1/3) + SQRT(3))/12 - 3^(3/4)*(SQRT(2*2^(2/3)*tt^(1/3)*
(3*SQRT(3) - SQRT(27 - 256*tt))^(1/3) + 2*2^(2/3)*tt^(1/3)*(SQRT(27 -
256*tt) + 3*SQRT(3))^(1/3) + SQRT(3)) - 3*3^(1/4))/12
which now involve real cube roots instead of trigonometric functions,
where again cc = gg = 1 for simplicity.
Martin.
PS @ Waldek: I saw unanswered posts by Ralf on fricas-devel.