sadf...@gmail.com
unread,Dec 7, 2016, 8:45:42 AM12/7/16You do not have permission to delete messages in this group
Either email addresses are anonymous for this group or you need the view member email addresses permission to view the original message
to
On Tuesday, December 5, 2006 3:02:00 PM UTC + 1, wrote math:
> Probleme ouvert
>
> Le theoreme du point fixe de Kannan suggere le probleme suivant:
>
> Soit (E,I.I) un espace de Banach.D est un sous-ensemble de E,
>
> ferme, borne et convexe.T est une application continue de D dans D,
>
> verifiant la 'contraction' suivante:
>
> ITx-TyI\leq max[Ix-TxI,Iy-TyI], sur DxD
>
> T admet-t'elle un point fixe si E est un 'bon' espace,
>
> par exemple, les espaces:de Hilbert,uniformement convexes,
>
> à structure normale,uniformement localement convexes.?
>
> Mes salutations
>
> Hanebaly,E.(Rabat)
salut Monsieur je vous demande si ce probléme est encore ouvert ou non
cordialement
**Translations**
> Open Problem
>
> The Kannan fixed point theorem suggests the following problem:
>
> Let (E, \|.\|) be a Banach space. Let D be a closed, convex, bounded
> subset of E. Let T be a continuous function from D to D verifying
> the following 'contraction' property:
>
> \| Tx - Ty \| \leq \max [ \| x - Tx \| , \| y - Ty \| ] on D x D
>
> Then must T have a fixed point if E is a 'good' space: for example,
> Hilbert space, uniformly convex, with normal structure, locally
> uniformly convex?
Greetings, Sir. I ask whether or not this problem is still open.