better to help with IDL code, but any idea is welcome!
Eran
The title of your posting refers to the SVD, but the body of the
posting indicates that you want to solve a linear system of equations,
perhaps in the least squares sense.
Unfortunately, computing the SVD of your 2,000,000 by 1,000,000 sparse
matrix is utterly impractical- it would require the storage of a
1,000,000 by 1,000,000 fully dense matrix and a 2,000,000 by 2,000,000
fully dense matrix, which would take up about 2.4e13 bytes of
storage...
Finding a least squares solution to the system of equation should
probably be done using an iterative method such as lsqr. In order to
do this, you'll first want to convert your data into a MATLAB sparse
matrix with
As=sparse(A(:,1),A(:,2),A(:,3));
Then solve with
x=lsqr(As,b);
Since your matrix is extremely large, this could take a long time or
simply fail to converge. If so, you might want to loosen the default
tolerance, introduce a preconditioner, etc. The documentation on lsqr
explains how to do these things.
this is only the (unfortunately usual) sloppy kind to write down a
linear least squares problem
>Unfortunately, computing the SVD of your 2,000,000 by 1,000,000 sparse
>matrix is utterly impractical- it would require the storage of a
>1,000,000 by 1,000,000 fully dense matrix and a 2,000,000 by 2,000,000
>fully dense matrix, which would take up about 2.4e13 bytes of
>storage...
>
>Finding a least squares solution to the system of equation should
>probably be done using an iterative method such as lsqr. In order to
>do this, you'll first want to convert your data into a MATLAB sparse
>matrix with
>
>As=sparse(A(:,1),A(:,2),A(:,3));
>
>Then solve with
>
>x=lsqr(As,b);
>
>Since your matrix is extremely large, this could take a long time or
>simply fail to converge. If so, you might want to loosen the default
>tolerance, introduce a preconditioner, etc. The documentation on lsqr
>explains how to do these things.
without matlab:
lsqr is available also through netlib (f77 code) but
what about netlib/svdpack, which has code just for this problem?
lsqr for such a large column space might run into trouble.
hth
peter
You said a couple of weeks ago that you'd gotten LINBCG to work on
this... what problems are you having with it?
-Jeremy.
It could be easier to compile SVDLIBC rather than the original SVDPACK
http://tedlab.mit.edu/~dr/SVDLIBC/
make under Cygwin happens to be enough and then
$ ./svd -r sth -o tt dat1.txt
seems to solve the problem matrix dat1.txt from SVDPACK
A good reference to SVD where I have found the link to SVDLIBC
http://en.wikipedia.org/wiki/Singular_value_decomposition
Best wishes,
Evgenii
http://MatrixProgramming.com
Well, Yes and Not.
Basiclly, the LINBCG is working after the adding, but for large array
the output seems with mistakes in some rows...
so I'm looking for something better