On 10/14/2017 02:35 PM, Julio Di Egidio wrote:
> On Saturday, October 14, 2017 at 9:05:00 PM UTC+2, mitch wrote:
>
>> As with Mr. Greene, when you do bother to reveal some source
>> for your opinions, they fall apart under scrutiny.
>
> Under whose scrutiny, you moron?
Mine.
It is the only one that counts when you
present your personal views as truth while
saying that I am wrong.
Elsewhere, you have been asked to clarify the distinction
you make between logic and mathematical logic
in this forum. You had been unable to be clear.
By contrast, I hold that the qualifier "mathematical"
in "mathematical logic" must be grounded in
mathematics.
One aspect of "methodology" you accuse me of not
having is to demarcate one's logical constants, although
the importance of this has its skeptics. You can find
discussion of this in the link,
https://plato.stanford.edu/entries/logical-constants/
Upon recognizing that truth tables relate to one
another as a finite affine plane, I gave names to
truth tables and formulated a finite projective
plane with a "line at infinity" composed of names
associated with quantificational logic,
NTRU : { ABSRD, ALL, OTHER, NO, SOME }
ABSRD : { ABSRD, NTRU, LEQ, XOR, TRU }
LEQ : { ABSRD, NIMP, NIF, IF, IMP }
XOR : { ABSRD, NOR, AND, OR, NAND }
TRU : { ABSRD, DENY, LET, FLIP, FIX }
ALL : { ALL, NTRU, NIMP, NOR, DENY }
NIMP : { ALL, LEQ, IF, AND, FIX }
NOR : { ALL, XOR, NIF, NAND, FLIP }
DENY : { ALL, TRU, IMP, OR, LET }
OTHER : { OTHER, NTRU, NIF, AND, LET }
NIF : { OTHER, LEQ, IMP, NOR, FLIP }
AND : { OTHER, XOR, NIMP, OR, FIX }
LET : { OTHER, TRU, IF, NAND, DENY }
NO : { NO, NTRU, IF, OR, FLIP }
IF : { NO, LEQ, NIMP, NAND, LET }
OR : { NO, XOR, IMP, AND, DENY }
FLIP : { NO, TRU, NIF, NOR, FIX }
SOME : { SOME, NTRU, IMP, NAND, FIX }
IMP : { SOME, LEQ, NIF, OR, DENY }
NAND : { SOME, XOR, IF, NOR, LET }
FIX : { SOME, TRU, NIMP, AND, FLIP }
The use of names here is compatible with the presentation of
projective geometries given through difference sets. The
one above is taken from
| 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7
| 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14
| 15 | 16 | 17 | 18 | 19 | 20 | 0 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15
| 16 | 17 | 18 | 19 | 20 | 0 | 1 |
| 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 0 | 1
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 19 | 20 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11
| 12 | 13 | 14 | 15 | 16 | 17 | 18 |
reorganized as
18 : { 0, 4, 3, 9, 11 }
0 : { 0, 18, 8, 6, 1 }
8 : { 0, 14, 19, 13, 10 }
6 : { 0, 2, 15, 12, 16 }
1 : { 0, 17, 5, 20, 7 }
4 : { 4, 18, 14, 2, 17 }
14 : { 4, 8, 13, 15, 7 }
2 : { 4, 6, 19, 16, 20 }
17 : { 4, 1, 10, 12, 5 }
3 : { 3, 18, 19, 15, 5 }
19 : { 3, 8, 10, 2, 20 }
15 : { 3, 6, 14, 12, 7 }
5 : { 3, 1, 13, 16, 17 }
9 : { 9, 18, 13, 12, 20 }
13 : { 9, 8, 14, 16, 5 }
12 : { 9, 6, 10, 15, 17 }
20 : { 9, 1, 19, 2, 7 }
11 : { 11, 18, 10, 16, 7 }
10 : { 11, 8, 19, 12, 17 }
16 : { 11, 6, 13, 2, 5 }
7 : { 11, 1, 14, 15, 20 }
The finite affine plane in this projective geometry has 20 lines
whose names correspond with names for truth tables except for
"NTRU" (falsity) which exchanges with "ABSRD" (absurdity) related
to quantificational logic by Frege's use of {x : x=/=x } to ground
his definition of natural numbers.
Those 20 names are organized into the ortholattice,
....................................TRU....................................
............................./.../..//\..\.................................
......................../..../.../../....\...\.............................
.................../...../..../..../.........\.....\.......................
............../....../...../....../...............\......\.................
........./......./....../......../.....................\.......\...........
....../......./......./........./...........................\........\.....
.....IF.....NAND......IMP.......OR..........................NO........ALL..
.....)))....|\.\...../../\...(.((...\\....................../\......././...
........)).)|.\.../.\../(.\.(..(.......\.\................/...\..../../....
............|)/\).).(./.\(.\..(..........\..\.........../......\./.../.....
........../.|..(\).)(/...)..\(\............\....\...../......./.\.../......
....../..(..|...(\.)/...)..(.\)...\..........\.....\/....../.....\./.......
./.(........|(....\/...).(..).\...)..\..........\/....\./.........\........
LET.......XOR..FLIP....FIX..LEQ...DENY......../....../...\......./.\.......
.\\....../...\/...\..../.|./..\...././...../...../.\........\.../...\......
..\..\../.../...\.../.\./|.....\./../..../..../...............\/.....\.....
...\.../.\/....../.\/....|.\../.\../.../.../...........\....../..\....\....
....\././....\././....\..|./...\.\/.//.....................\./.......\.\...
.....NIF......AND......NIMP.....NOR........................SOME......OTHER.
......\.......\.......\.........\.........................../......../.....
.........\.......\......\........\...................../......./...........
..............\......\.....\......\.............../....../.................
...................\.....\....\....\........./...../.......................
........................\....\...\..\..../.../.............................
.............................\...\..\\/../.................................
...................................ABSRD...................................
which is an atomic amalgam of a 4-atom Boolean subblock and a 3-atom
Boolean subblock with the complete connective "NOR" as the shared atom.
All of the constants corresponding with truth tables (except "NTRU") are
located at the loci they would have in the free Boolean lattice on two
generators.
I hold quantificational logic to be prior to propositional logic with
propositional logic identifiable as a closed subsystem because of the
structure of the ortholattice.
Truth-functional connectivity is established with a set of axioms
over the 16 truth table names as I have discussed elsewhere. They
describe functions in a manner found in a monograph by Church on
the lambda calculus.
For someone with as little knowledge of mathematics as you have
to accuse me of not having a methodology just because it is not
acceptable to you is laughable.
Go suck on some philosophy somewhere.
mitch