Taking another stab at it...
Epidmenides is a Cretan
1. Cretan(epi)
Axiom
Define: Statement x
2. Statement(x)
Axiom
3. True(x) <=> ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]
Axiom
Epimenides said statement x
4. Said(epi,x)
Axiom
Prove: ~True(x) (Statement x is not true)
Suppose to the contrary...
5. True(x)
Premise
Apply definition of statement x
6. [True(x) => ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]]
& [ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)] => True(x)]
Iff-And, 3
7. True(x) => ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]
Split, 6
8. ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]
Detach, 7, 5
9. ALL(b):[Cretan(epi) & Statement(b) & Said(epi,b) => ~True(b)]
U Spec, 8
10. Cretan(epi) & Statement(x) & Said(epi,x) => ~True(x)
U Spec, 9
11. Cretan(epi) & Statement(x)
Join, 1, 2
12. Cretan(epi) & Statement(x) & Said(epi,x)
Join, 11, 4
13. ~True(x)
Detach, 10, 12
14. True(x) & ~True(x)
Join, 5, 13
As Required: (By contradiction)
15. ~True(x)
4 Conclusion, 5
Apply definition of statement x
16. [True(x) => ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]]
& [ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)] => True(x)]
Iff-And, 3
17. True(x) => ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]
Split, 16
18. ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)] => True(x)
Split, 16
19. ~True(x) => ~ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]
Contra, 18
20. ~ALL(a):ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]
Detach, 19, 15
Changing quantifiers, etc....
21. ~~EXIST(a):~ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]
Quant, 20
22. EXIST(a):~ALL(b):[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]
Rem DNeg, 21
23. EXIST(a):~~EXIST(b):~[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]
Quant, 22
24. EXIST(a):EXIST(b):~[Cretan(a) & Statement(b) & Said(a,b) => ~True(b)]
Rem DNeg, 23
25. EXIST(a):EXIST(b):~~[Cretan(a) & Statement(b) & Said(a,b) & ~~True(b)]
Imply-And, 24
26. EXIST(a):EXIST(b):[Cretan(a) & Statement(b) & Said(a,b) & ~~True(b)]
Rem DNeg, 25
At least on Cretan once said a true statement.
27. EXIST(a):EXIST(b):[Cretan(a) & Statement(b) & Said(a,b) & True(b)]
Rem DNeg, 26
Joining results: Statement x must be false, and some Cretan once said a true statement.
28. ~True(x)
& EXIST(a):EXIST(b):[Cretan(a) & Statement(b) & Said(a,b) & True(b)]
Join, 15, 27