This is not a voltage stabilization circuit. It is a ripple filter. The
purpose is identical to your cap multiplier, but the performance is greatly
improved. As I describe below, a current source into a capacitor has much
better low frequency performance than an emitter follower into the same
cap.
Of course, a real world current source does not have infinite impedance,
but a PNP transistor is good enough.
>> A constant current source is a high impedance, and gives good
>> attenutation down to low frequency. The example below gives around
>> -28dB at 10 Hz, where the emitter follower has to go aboe 300 Hz for
>> the same attenuation.
>
>> The constant current source also gives a respectable -180dB attenuation
>> between 100 KHz and 2 MHz. The attenuation at higher frequencies
>> depends on the quality of the bypass capacitors, and it is probably a
>> good idea to add ceramics in parallel.
>>
>>
https://rb.gy/m4gx7e
>
> Requires a sign-in.
Sorry about that. I spent the better part of a day trying to find a
suitable file host. There are plenty, but they all have problems such as
limited file lifetime, limited downloads, strange signin, or just plain
don't work. Google Drive turned out to be the best, but I was unaware it
requires a signin. I'm still trying to get my own web site working again at
000webhost.com, but they rewrote the program and broke it. I'll try the
others and see if they are any better.
I'll post the ASC and PLT files at the end.
> I use cap multipliers a lot, and they work great. You can put them
> inside an op amp loop with split feedback if you want better low
> frequency ripple rejection--the amp can be powered off the cap
> multiplier's output to avoid its crappy HF CMR screwing everything up.
Can you post a circuit?
> In a positive switching regulator circuit, you can even use the
> split-feedback trick to put the cap multiplier inside the regulator's
> feedback loop. You do have to watch the sneak path via the series RC,
> of course, but it's fine for light-duty use such as op amp rails.
I also use rc filters in the feedback path for TL431 regulators. Works
great.
> Op amps have good CMR at LF but much less at HF, which makes cap
> multipliers the natural complement.
>
> Cheers
>
> Phil Hobbs
Here's the current source version of your cap multiplier. The PLT file is
at the end.
Version 4
SHEET 1 1352 680
WIRE 368 -224 -352 -224
WIRE 688 -224 432 -224
WIRE -400 -128 -480 -128
WIRE -352 -128 -352 -224
WIRE -352 -128 -400 -128
WIRE -304 -128 -352 -128
WIRE -240 -128 -304 -128
WIRE -112 -128 -144 -128
WIRE -32 -128 -112 -128
WIRE 160 -128 -32 -128
WIRE 256 -128 160 -128
WIRE 400 -128 352 -128
WIRE 688 -128 688 -224
WIRE 688 -128 400 -128
WIRE 720 -128 688 -128
WIRE 832 -128 720 -128
WIRE 880 -128 832 -128
WIRE 944 -128 880 -128
WIRE 160 -96 160 -128
WIRE 624 -64 592 -64
WIRE 656 -64 624 -64
WIRE 720 -64 720 -128
WIRE 832 -64 832 -128
WIRE 944 -64 944 -128
WIRE -480 -48 -480 -128
WIRE -304 -48 -304 -128
WIRE -288 -48 -304 -48
WIRE -192 -48 -192 -64
WIRE -192 -48 -224 -48
WIRE -160 -48 -192 -48
WIRE -144 -48 -160 -48
WIRE -32 -48 -32 -128
WIRE -32 -48 -64 -48
WIRE 592 -48 592 -64
WIRE 400 -32 400 -128
WIRE 544 -32 400 -32
WIRE 160 -16 160 -32
WIRE 400 16 400 -32
WIRE 416 16 400 16
WIRE 512 16 496 16
WIRE 544 16 512 16
WIRE 512 32 512 16
WIRE 592 48 592 32
WIRE 720 64 720 0
WIRE 832 64 832 16
WIRE 832 64 720 64
WIRE 944 64 944 16
WIRE 944 64 832 64
WIRE -32 80 -32 -48
WIRE 0 80 -32 80
WIRE 112 80 80 80
WIRE 144 80 112 80
WIRE 160 80 144 80
WIRE 272 80 240 80
WIRE 304 80 304 -64
WIRE 304 80 272 80
WIRE 720 80 720 64
WIRE -480 96 -480 32
WIRE 144 112 144 80
WIRE 304 112 304 80
WIRE 512 112 512 96
WIRE -480 192 -480 176
WIRE 144 192 144 176
WIRE 304 192 304 176
FLAG 304 192 0
FLAG 720 80 0
FLAG 880 -128 Vout
FLAG -400 -128 Vin
FLAG -160 -48 Q2B
FLAG 272 80 Q1B
FLAG -112 -128 Q2C
FLAG 592 48 0
FLAG 512 112 0
FLAG 624 -64 Mult
FLAG 160 -16 0
FLAG -480 192 0
FLAG 512 16 E1N
FLAG 144 192 0
FLAG 112 80 R1R2
SYMBOL res 144 96 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R2
SYMATTR Value 1k
SYMBOL npn 256 -64 R270
WINDOW 0 58 37 VRight 2
WINDOW 3 91 14 VRight 2
SYMATTR InstName Q1
SYMATTR Value 2N3904
SYMBOL res 816 -80 R0
SYMATTR InstName R6
SYMATTR Value 500
SYMBOL current 944 -64 R0
WINDOW 123 0 0 Left 2
WINDOW 39 0 0 Left 2
SYMATTR InstName I1
SYMATTR Value 50m
SYMBOL cap 144 -96 R0
SYMATTR InstName C3
SYMATTR Value {Cf}
SYMATTR SpiceLine Rser=10m
SYMBOL cap 288 112 R0
SYMATTR InstName C6
SYMATTR Value {Cf}
SYMATTR SpiceLine Rser=10m
SYMBOL cap 704 -64 R0
SYMATTR InstName C7
SYMATTR Value {Cf}
SYMATTR SpiceLine Rser=10m
SYMBOL cap 432 -240 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 43 26 VTop 2
SYMATTR InstName C8
SYMATTR Value 1f
SYMBOL e 592 -64 R0
SYMATTR InstName E1
SYMATTR Value 1000
SYMBOL cap 496 32 R0
SYMATTR InstName C4
SYMATTR Value {Cf}
SYMATTR SpiceLine Rser=10m
SYMBOL res 512 0 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R5
SYMATTR Value 100k
SYMBOL pnp -144 -64 M270
WINDOW 0 50 53 VLeft 2
WINDOW 3 83 77 VLeft 2
SYMATTR InstName Q2
SYMATTR Value 2N3906
SYMBOL res -48 -64 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R3
SYMATTR Value 490
SYMBOL cap -224 -64 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C9
SYMATTR Value 10m
SYMBOL voltage -480 -64 R0
WINDOW 123 39 78 Left 2
WINDOW 39 0 0 Left 2
WINDOW 0 37 19 Left 2
WINDOW 3 7 114 Left 2
SYMATTR Value2 AC 1
SYMATTR InstName V3
SYMATTR Value PULSE(11.5 12.5 0 1u 5u 0 6u)
SYMBOL voltage -480 80 R0
WINDOW 123 -75 167 Left 2
WINDOW 39 0 0 Left 2
WINDOW 0 37 19 Left 2
WINDOW 3 -75 145 Left 2
SYMATTR InstName V4
SYMATTR Value PULSE(0.5 -0.01 0 500n 0 0n)
SYMBOL res -16 96 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R1
SYMATTR Value 1k
SYMBOL cap 128 112 R0
SYMATTR InstName C1
SYMATTR Value {Cf}
SYMATTR SpiceLine Rser=10m
TEXT 224 -408 Left 2 !.param Cf 100u
TEXT -168 -328 Left 2 ;.tran 0 100u 0 10n\
n.ac oct 100 0.1 1G\n.noise v
(out) v1 dec 500 1 100meg
TEXT -168 -448 Left 2 ;'5-Pole, 2-Stage Cap Multiplier PNP -28dB@10Hz
TEXT -168 -408 Left 2 !.ac oct 100 0.1 1G
[AC Analysis]
{
Npanes: 4
Active Pane: 2
{
traces: 1 {524291,0,"V(mult)"}
X: ('G',0,0.1,0,1e+009)
Y[0]: (' ',0,1e-007,20,1000)
Y[1]: (' ',0,-280,40,120)
Volts: ('µ',0,0,0,0,5e-006,5.5e-005)
Log: 1 2 0
GridStyle: 1
PltMag: 1
},
{
traces: 1 {524293,0,"V(vout)"}
X: ('G',0,0.1,0,1e+009)
Y[0]: (' ',0,1e-010,20,1)
Y[1]: (' ',0,-280,40,120)
Volts: (' ',0,0,3,10.138,0.002,10.16)
Log: 1 2 0
GridStyle: 1
PltMag: 1
PltPhi: 1 0
},
{
traces: 2 {524292,0,"V(q2c)"} {524294,0,"V(q1b)"}
X: ('G',0,0.1,0,1e+009)
Y[0]: (' ',0,1e-012,20,10)
Y[1]: (' ',0,-280,40,120)
Volts: (' ',0,0,5,10.86908,2e-005,10.86934)
Log: 1 2 0
GridStyle: 1
PltMag: 1
},
{
traces: 1 {524290,0,"V(vin)"}
X: ('G',0,0.1,0,1e+009)
Y[0]: ('m',0,0.998849369936505,0.002,1.00115195553817)
Y[1]: ('m',1,-0.001,0.0002,0.001)
Volts: (' ',0,0,1,11.5,0.1,12.5)
Log: 1 2 0
GridStyle: 1
PltMag: 1
}
}
[Transient Analysis]
{
Npanes: 4
Active Pane: 2
{
traces: 1 {524291,0,"V(mult)"}
X: ('µ',0,0,5e-006,5e-005)
Y[0]: ('µ',1,6e-007,3e-007,3.6e-006)
Y[1]: (' ',0,1e+308,40,-1e+308)
Volts: ('µ',0,0,1,6e-007,3e-007,3.6e-006)
Log: 0 0 0
GridStyle: 1
PltMag: 1
PltPhi: 1 0
},
{
traces: 1 {524293,0,"V(out)"}
X: ('µ',0,0,5e-006,5e-005)
Y[0]: (' ',3,9.8,0.002,9.82)
Y[1]: (' ',0,1e+308,40,-1e+308)
Volts: (' ',0,0,3,9.8,0.002,9.82)
Log: 0 0 0
GridStyle: 1
PltMag: 1
PltPhi: 1 0
},
{
traces: 1 {524292,0,"V(q2c)"}
X: ('µ',0,0,5e-006,5e-005)
Y[0]: (' ',5,10.87242,2e-005,10.87268)
Y[1]: (' ',0,1e+308,20,-1e+308)
Volts: (' ',0,0,5,10.87242,2e-005,10.87268)
Log: 0 0 0
GridStyle: 1
PltMag: 1
PltPhi: 1 0
},
{
traces: 1 {524290,0,"V(vin)"}
X: ('µ',0,0,5e-006,5e-005)
Y[0]: (' ',1,11.5,0.1,12.5)
Y[1]: ('m',1,1e+308,0.0002,-1e+308)
Volts: (' ',0,0,1,11.5,0.1,12.5)
Log: 0 0 0
GridStyle: 1
PltMag: 1
PltPhi: 1 0