Any help will be greatly appreciated. Thank you!
-----------------------------------------------------------------ORIGAMI input code--------------------------------------------------------------------------------------
=origami
% Case and identifier information
title="RepU 1"
prefix= RepU1
% Parameter options
options{
mtu=1.0
stdcomp=yes
decayheat=yes
ft71=all
}
% Array containing ORIGEN library names
libs=[ "w17x17" ]
% Fuel composition (UO2-based fuel)
fuelcomp{
stdcomp(RepU){
base=uo2
iso[92234=0.088 92235=3.52 92236=1.14 92238=95.25]
}
mix(1){ comps[ RepU=100.0 ] }
}
% Axial variation in water density (g/cc) corresponding to the axial power zones
modz=[ 0.7332 ]
% Axial (Z) power shaping factors / fractional power distribution for the assembly
pz=[ 1.0 ]
% Power history
% Does not need to have cycles. Can be just one cycle and 5-year cool down.
% Specific power (MW/MTU) for each cycle / Cycle length (days) / Number of libraries per cycle / downtime between cycles (days)
% Cooling time (days)
hist[
cycle{ power=40 burn=333.33 nlib=4 down=16.67 }
cycle{ power=40 burn=333.33 nlib=4 down=16.67 }
cycle{ power=40 burn=333.33 nlib=4 down=0 }
cycle{ down=1825}
]
% Output edit options
print{
nuc{ units=[grams watts g-watts] sublibs=[ac] }
}
% Nuclides included in comp file (OPTIONAL: overrides default)
nuccomp=[
92232 92233 92234 92235 92236 92237 92238 92239 92240 92241
94236 94237 94238 94239 94240 94241 94242 94243 94244 94246
]
end
print{
kinf=yes
}
=========================================================================================================================
= History overview for case 'c01_down' (#3/8) =
= Cycle 1-->Cycle 2: Downtime (30 days) =
-------------------------------------------------------------------------------------------------------------------------
step t0 t1 dt t flux fluence power energy
(-) (d) (d) (s) (s) (n/cm2-s) (n/cm2) (MW) (MWd)
1 540.000000 540.001526 1.296000E+02 4.665613E+07 0.000000E+00 6.664200E+21 0.000000E+00 1.080000E+04
2 540.001526 540.004578 2.678400E+02 4.665640E+07 0.000000E+00 6.664200E+21 0.000000E+00 1.080000E+04
3 540.004578 540.013672 7.862400E+02 4.665718E+07 0.000000E+00 6.664200E+21 0.000000E+00 1.080000E+04
4 540.013672 540.041199 2.376000E+03 4.665956E+07 0.000000E+00 6.664200E+21 0.000000E+00 1.080000E+04
5 540.041199 540.123474 7.110720E+03 4.666667E+07 0.000000E+00 6.664200E+21 0.000000E+00 1.080000E+04
6 540.123474 540.370422 2.133216E+04 4.668800E+07 0.000000E+00 6.664200E+21 0.000000E+00 1.080000E+04
7 540.370422 541.111084 6.399648E+04 4.675200E+07 0.000000E+00 6.664200E+21 0.000000E+00 1.080000E+04
8 541.111084 543.333313 1.919981E+05 4.694400E+07 0.000000E+00 6.664200E+21 0.000000E+00 1.080000E+04
9 543.333313 550.000000 5.760029E+05 4.752000E+07 0.000000E+00 6.664200E+21 0.000000E+00 1.080000E+04
10 550.000000 570.000000 1.728000E+06 4.924800E+07 0.000000E+00 6.664200E+21 0.000000E+00 1.080000E+04
step - step index within this case
t0 - time at beginning-of-step in input units
t1 - time at end-of-step in input units
dt - length of step in seconds
t - end-of-step cumulative time in seconds
flux - flux in neutrons/cm^2-sec (CALCULATED)
fluence - cumulative end-of-step fluence in neutrons/cm^2 (CALCULATED)
power - power in mega-watts (INPUT)
energy - cumulative end-of-step energy released in mega-watt-days (INPUT)
=========================================================================================================================
=opus
data="name_of_your_FT71_file"
units=grams
libtype=act
symnuc=u pu end
end