This topic has been migrated from the SCALE 6 notebook.
Date: Tue May 4 22:50:02 2010
=t-depl parm=(nitawl,addnux=2)
Large scale 2-D depletion model with a boron letdown curve
' This sample problem performs an assembly-averaged depletion for a 1/4 assembly.
' All fuel rods are modeled with a single mixture.
' A boron letdown curve is include in the calculation.
44groupndf5
read alias
$fuel 1 2 3 end
$clad 25 27 29 end
$mod 26 28 30 end
end alias
read comp
'Fuel
uo2 1 den=10.412 1 928.0
92235 4.90
92234 0.04
92238 95.06 end
'barra de gadolinio. ROD G04
UO2 2 den=10.2438 0.92 928.0 92234 0.02 92235 2.8 92238 97.18 end
ARBM-GD203 10.2438 2 0 1 1 64000 2 8016 3 2 0.08 928.0 end
'resto barras de gadolinio
UO2 3 den=10.2438 0.92 928.0 92235 2.8 92238 97.2 end
ARBM-GD203 10.2438 2 0 1 1 64000 2 8016 3 3 0.08 928.0 end
zirc4 $clad 1 600.0 end
' moderador 970 ppm a MOL
h2o $mod den=0.75394 1 559.1 end
boron $mod 3.0878e-04 559.1 end
end comp
read celldata
latticecell squarepitch pitch=1.2600 26 fuelr=0.411 1 cladr=0.4750 25 end
latticecell squarepitch pitch=1.2600 28 fuelr=0.411 2 cladr=0.4750 27 end
more data dan(2)=0.3333 end more
latticecell squarepitch pitch=1.2600 30 fuelr=0.411 3 cladr=0.4750 29 end
more data dan(3)=0.3333 end more
end celldata
read depletion -2 1 3 end depletion
read timetable
densmult $mod 2 5010 5011
0.0 1.832
22 1.749
74 1.646
152 1.388
256 1.000
334 0.700
412 0.375
504 0.007
505 1.832
1002 0.010
1003 1.832
1514 0.010
1515 1.832
2000 0.010
2028 0.010 end
end timetable
read burndata
'ciclo 12'
power=33.456 burn=50.0 down=0.00 NLIB=1 end
end burndata
'**********
READ keep_output
nitawl opus
END keep_output
'***
read opus
matl=2 end
units=gram symnuc=u-234 u-235 u-236 u-238 pu-238 pu-239
pu-240 pu-241 pu-242 np-237 am-241 am-243 cm-242 cm-243
cs-134 cs-137 nd-143 nd-144 nd-145 nd-146 cm-244 cm-245
nd-148 nd-150 sb-125 sm-147 sm-148 sm-149 sm-150 sm-151
sm-152 sm-154 eu-154 ce-144 o-16 end
sort=NO
end opus
read model
1/4 Vandellos II fuwel assembly
read parm
echo=yes collapse=yes drawit=yes epsilon=5E-4
inners=4 outers=150
end parm
read materials
$fuel 1 ! fuel ! end
$mod 1 ! Water! end
$clad 1 ! clad ! end
end materials
read geom
'water hole in X=1
unit 25
cylinder 20 0.5625
cylinder 30 0.6025
cuboid 40 0.6300 0.0 0.63 -0.63
media 26 1 20
media 25 1 30 -20
media 26 1 40 -30
boundary 40 2 2
'water hole completo
unit 30
cylinder 20 0.5625
cylinder 30 0.6025
cuboid 40 4p0.6300
media 26 1 20
media 25 1 30 -20
media 26 1 40 -30
boundary 40 2 2
'water hole in Y=1
unit 45
cylinder 20 0.5625
cylinder 30 0.6025
cuboid 40 0.63 -0.63 0.6300 0.0
media 26 1 20
media 25 1 30 -20
media 26 1 40 -30
boundary 40 2 2
unit 46
cylinder 20 0.5625
cylinder 30 0.6025
cuboid 40 0.63 0.0 0.6300 0.0
media 26 1 20
media 25 1 30 -20
media 26 1 40 -30
boundary 40 2 2
'subgrid 1 is a material #1 rod
UNIT 1
cylinder 10 0.4110 com="barras UO2"
cylinder 20 0.4750
cuboid 30 4p0.6300
media 1 1 10
media 25 1 20 -10
media 26 1 30 -20
boundary 30 2 2
'subgrid 11 is a material #2 rod
UNIT 11
cylinder 10 0.4110 com="barra G04"
cylinder 20 0.4750
cuboid 30 4p0.6300
media 2 1 10
media 25 1 20 -10
media 26 1 30 -20
boundary 30 4 4
'subgrid 21 is a material #3 rod
UNIT 21
cylinder 10 0.4110 com="resto barras Gd"
cylinder 20 0.4750
cuboid 30 4p0.6300
media 3 1 10
media 25 1 20 -10
media 26 1 30 -20
boundary 30 2 2
'subgrid 2 is a material #1 rod
UNIT 2
cylinder 10 0.4110
cylinder 20 0.4750
cuboid 30 0.63 -0.63 0.6300 0.0
media 1 1 10
media 25 1 20 -10
media 26 1 30 -20
boundary 30 2 2
'subgrid 3 is a material #1 rod
UNIT 3
cylinder 10 0.4110
cylinder 20 0.4750
cuboid 30 0.6300 0.0 0.63 -0.63
media 1 1 10
media 25 1 20 -10
media 26 1 30 -20
boundary 30 2 2
GLOBAL
UNIT 50 com="1/4 assembly+gap"
cuboid 10 10.752 0.0 10.752 0.0
media 26 1 10
array 1 10 place 1 1 0. 0.
boundary 10 17 17
end geom
read array
ara=1 nux=9 nuy=9
fill
46 2 2 45 2 2 45 2 2
3 1 1 1 1 1 1 1 1
3 1 21 1 1 21 1 1 1
25 1 1 30 1 1 30 1 1
3 1 1 1 1 1 1 1 1
3 1 11 1 1 30 1 1 1
25 1 1 30 1 1 21 1 1
3 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 end fill
end array
read bounds all=refl end bounds
end model
end data
'***
'* end of newt transport model
'***
end
Carlos A. Casado
Dear Colleagues:
I was using MCDancoff program to calculate Dancoff correction for peripheral and corner rods, to see differences in Kinfinity values in Triton calculations. In the attached previous file there is an Triton input file simulating a 1/4 PWR fuel assembly; I have defined three different fuel compositions (i.e. 1, 2 and 3) and the **** problem geometry **** output aparently recognizes the dancoff correction:
_________________________________________
mip message number mp-52 follows:
*** warning *** in more data dancoff information (dan( )=) was supplied for mixture 2 this value will be used instead of calculating the dancoff from the cell description.
**** special parameters for cell 2 ****
isn 8 order of angular quadrature
isct 5 order of scattering
iim 20 inner iteration maximum
icm 25 outer iteration maximum
szf 1.00000E+00 size factor for spatial mesh
eps 1.00000E-05 overall problem convergence
ptc 1.00000E-06 scalar flux convergence
bkl 1.42089E+00 buckling factor
ius 0 thermal upscatter scaling
bal fine balance table print flag
dy 0.00000E+00 buckling height
dz 0.00000E+00 buckling depth
ipn 3 diffusion coefficient option
frd 0 logical unit number to read flux guess
fwr 17 logical unit number to write flux guess
iprt -2 xsdrn cross section print flag
id1 -1 xsdrn flux print flag
msh 2001 number of intervals for res. integrations
mlv 2 max lvalue for res. intgrtns
axs 0 logical unit number to write anisn lib
nbu 76 logical unit number to write bal.tables
dancoff factor specification
mixture factor
2 0.33330
__________________________________
the same applies for the mixture 3. Nevertheless, when one reads the Nitawl output, the things are different:
__________________________________
92U 236 BNL HEDL + EVALJUL78 DIVADEENAM MANN MOD3 01/23/91 2092236 temperature= 928.00
resonance data for this nuclide
mass number (a) = 234.020 temperature(kelvin) = 928.00K
potential scatter sigma = 10.995 lumped nuclear density = 3.8283E-06
spin factor (g) = 0.000 lump dimension (a-bar) = 4.1100E-01
inner radius = 0.0000E+00 dancoff correction (c) = 3.2907E-01
__________________________________
That Dancoff value is, in fact, the one corresponding to the regular lattice (mixture 1 in my example) and the same occurs for the mixture 3
resonance calculations.
Therefore, the only solution is to calculate different equivalent pitches for the different rods, as is recommended for Tsunami3d.
Thank you in advance,
Carlos A. Casado
Core Design
Dear Carlos,
The use of the MORE DATA input to modify Dancoff factors for NITAWL is an antiquated technique that is not recommended for use with MCDancoff. It is better to use CENTRM with the CENTRM DATA entry Dan2Pitch.
As documented in Section M7.3.9 of the SCALE 6.0 manual, when modifying NITAWL calculations, the DAN keyword must be used in conjunction with the RES keyword. However, these "should be entered for each resonance mixture that is not specified in the LATTICECELL or MULTIREGION unit cell specification data.
See Sect. M7.4.7. These items are not needed when multiple unit cells are defined. They are included for compatibility with SCALE 4 input files only."
In SCALE 6.1, the DAN keyword will be allowed without the RES keyword to modify the unresolved resonance treatment with BONAMI, as documented in the Winter/Spring 2010 SCALE Newsletter.