I went to some lengths.
/** On pattern matcher checkability:
 *
 *  Consider a pattern match of this form: (x: X) match { case _: P => }
 *
 *  There are four possibilities to consider:
 *     [P1] X will always conform to P
 *     [P2] x will never conform to P
 *     [P3] X <: P if some runtime test is true
 *     [P4] X cannot be checked against P
 *
 *  The first two cases correspond to those when there is enough
 *  static information to say X <: P or that (x ∈ X) ⇒ (x ∉ P).
 *  The fourth case includes unknown abstract types or structural
 *  refinements appearing within a pattern.
 *
 *  The third case is the interesting one.  We designate another type, XR,
 *  which is essentially the intersection of X and |P|, where |P| is
 *  the erasure of P.  If XR <: P, then no warning is emitted.
 *
 *  Examples of how this info is put to use:
 *  sealed trait A[T] ; class B[T] extends A[T]
 *    def f(x: B[Int]) = x match { case _: A[Int] if true => }
 *    def g(x: A[Int]) = x match { case _: B[Int] => }
 *
 *  `f` requires no warning because X=B[Int], P=A[Int], and B[Int] <:< A[Int].
 *  `g` requires no warning because X=A[Int], P=B[Int], XR=B[Int], and B[Int] <:< B[Int].
 *      XR=B[Int] because a value of type A[Int] which is tested to be a B can
 *      only be a B[Int], due to the definition of B (B[T] extends A[T].)
 *
 *  This is something like asSeenFrom, only rather than asking what a type looks
 *  like from the point of view of one of its base classes, we ask what it looks
 *  like from the point of view of one of its subclasses.
 */