Hello Rob,
Sorry for the late follow up. I've been looking into normalization more, and I was wondering about a few things that perhaps you might be able to answer or discuss
So we have within samples normalization (TPM or others) and between samples normalization (TMM or others), but is it necessary to do both ever, i.e. is it ever necessary to normalize relative abundances across a cohort?
I don't think it would be, but another scenario which seems to be quite common is filtering out isoforms that have no expression for 90% (or some other threshold) of the samples if working with a large cohort. But if you do this while working with TPM then the sum of TPM for every isoform for each subject will no longer be equal. Would it make sense to then use TMM after such a filtration process? I think it would.
Do you think such filter out of isoforms is flawed in some manner?
My guess is it used because people are worried about the sensitivity of RNA-seq and biologically most think that for specific tissue type a good percentage of genes are not expressed. So I think it makes some sense
What are your thoughts?
Best,
Nick