Beware of sympy for fourier transform of unintegrable functions :
This works :
sage: var("x,t,omega")
(x, t, omega)
sage: from sympy import fourier_transform, inverse_fourier_transform
sage: fourier_transform(e^-t^2,t,omega)._sage_()
sqrt(pi)*e^(-pi^2*omega^2)
sage: inverse_fourier_transform(fourier_transform(e^-t^2,t,omega)._sage_(),omega,t)._sage_()
e^(-t^2)
But :
sage: fourier_transform(sin(t),t,omega)._sage_()
0
sage: fourier_transform(sin(t),t,omega,noconds=False)
(0,
And(Abs(periodic_argument(exp_polar(-I*pi)*polar_lift(omega)**2, oo)) < pi, Abs(periodic_argument(exp_polar(I*pi)*polar_lift(omega)**2, oo)) < pi))Whereas one could expect a sum of Diracs. This issue is known to Sympy developers (see
this question on stackoverflow and the
resulting issue in sympy ticket system).
Maybe a similar ticket should be opened for Sage, which has, as far as I know, no way to represent a Dirac or a Heaviside function in SR...
HTH,
--
Emmanuel Charpentier