Algebraic Manipulation Help

44 views
Skip to first unread message

Horst Staley

unread,
Mar 13, 2024, 11:21:08 PMMar 13
to sage-s...@googlegroups.com
Hello,
I'm having some issues with a simple example of algebraic manipulation.

The two examples below mean the same thing mathematically, so it's strange that they get different results.

Example 1 correctly finds that the conclusion is true:

from sage.all import *
def main2():
    n, b, x = var('n b x', domain='real')
    premises = [
            b != 1,
            sqrt(log(n)/log(b)) == log(sqrt(n))/log(b),
            b*log(n)/log(b) == log(b*n)/log(b),
            #x == log(n)/log(b),
            ]
    x = log(n)/log(b)

    conclusion = sqrt(x) - x/2 == 0

    with assuming(*premises):
        result = conclusion.full_simplify()
        bool_result = bool(result)

    print(premises)
    print(conclusion)
    print(result)
    print(bool_result)

Its output is:

[b != 1, sqrt(log(n)/log(b)) == log(sqrt(n))/log(b), b*log(n)/log(b) == log(b*n)/log(b)]
sqrt(log(n)/log(b)) - 1/2*log(n)/log(b) == 0
1/2*(2*sqrt(log(n)/log(b))*log(b) - log(n))/log(b) == 0
True

Example 2 (switching x = to x ==) fails:

from sage.all import *
def main2():
    n, b, x = var('n b x', domain='real')
    premises = [
            b != 1,
            sqrt(log(n)/log(b)) == log(sqrt(n))/log(b),
            b*log(n)/log(b) == log(b*n)/log(b),
            x == log(n)/log(b),
            ]
    #x = log(n)/log(b)

    conclusion = sqrt(x) - x/2 == 0

    with assuming(*premises):
        result = conclusion.full_simplify()
        bool_result = bool(result)

    print(premises)
    print(conclusion)
    print(result)
    print(bool_result)

with this output:

[b != 1, sqrt(log(n)/log(b)) == log(sqrt(n))/log(b), b*log(n)/log(b) == log(b*n)/log(b), x == log(n)/log(b)]
-1/2*x + sqrt(x) == 0
-1/2*x + sqrt(x) == 0
False

Any ideas on what I'm doing wrong here?

Thanks,
Horst
Reply all
Reply to author
Forward
0 new messages