Hello again!
Is that method general? I tried now to find the integer points of x^3
- 3*x*y^2-y^3-1 without success.
Jaakko
sage: R.<x,y> = QQ[]
sage: P = x^3 - 81/4 + y^2
sage: E=EllipticCurve(P)
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call
last)
/home/jaakko/Matikka/sage-4.2.1-linux-Ubuntu_9.10-i686-Linux/<ipython
console> in <module>()
/home/jaakko/Matikka/sage-4.2.1-linux-Ubuntu_9.10-i686-Linux/local/lib/
python2.6/site-packages/sage/schemes/elliptic_curves/constructor.pyc
in EllipticCurve(x, y, j)
214 return EllipticCurve([a1, a2, a3, a4, a6])
215 except AssertionError:
--> 216 raise NotImplementedError, "Construction of an
elliptic curve from a generic cubic not yet implemented."
217
218 if rings.is_Ring(x):
NotImplementedError: Construction of an elliptic curve from a generic
cubic not yet implemented.
sage: P = x^3 - 3*x*y^2-y^3-1
sage: E=EllipticCurve(P)
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call
last)
/home/jaakko/Matikka/sage-4.2.1-linux-Ubuntu_9.10-i686-Linux/<ipython
console> in <module>()
/home/jaakko/Matikka/sage-4.2.1-linux-Ubuntu_9.10-i686-Linux/local/lib/
python2.6/site-packages/sage/schemes/elliptic_curves/constructor.pyc
in EllipticCurve(x, y, j)
186 elif len(f.parent().gens()) == 2 or len(f.parent().gens
()) == 3 and f.is_homogeneous():
187 # We'd need a point too...
--> 188 raise NotImplementedError, "Construction of an
elliptic curve from a generic cubic not yet implemented."
189 else:
190 raise ValueError, "Defining polynomial must be a
cubic polynomial in two variables."
NotImplementedError: Construction of an elliptic curve from a generic
cubic not yet implemented.