Yes it is, as almost any function in Singular, thanks to the Singular function
interface :)
Using the example from
http://www.singular.uni-kl.de/Manual/latest/sing_266.htm
sage: P.<x,y,z> = PolynomialRing(GF(181),order='neglex')
sage: I = Ideal(x^2+x*y*z,y^2-z^3*y,z^3+y^5*x*z)
sage: from sage.libs.singular.function_factory import singular_function
sage: maxideal = singular_function('maxideal')
sage: J = maxideal(3,ring=P)+I
sage: minbase = singular_function('minbase')
sage: minbase(J)
[x^2, x*y*z, x*z^2, y^2, y*z^2, z^3]
Cheers,
Martin
--
name: Martin Albrecht
_pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99
_otr: 47F43D1A 5D68C36F 468BAEBA 640E8856 D7951CCF
_www: http://www.informatik.uni-bremen.de/~malb
_jab: martinr...@jabber.ccc.de
@Martin Thanks for the code.
Actually I wanted to do this "without" going back and forth Singular.
(i.e. defining the object as Singular objects.) This is one more
"trick" I have learnt today wherein I can avoid going to Singular and
do almost everything I could have done there :-)
Thanks once again...
-- VInay
On 29 September 2011 14:53, Martin Albrecht
> --
> To post to this group, send email to sage-s...@googlegroups.com
> To unsubscribe from this group, send email to sage-support...@googlegroups.com
> For more options, visit this group at http://groups.google.com/group/sage-support
> URL: http://www.sagemath.org
>