FWIW, executing :
reset()
# Don't scratch Sage's predefined identifiers, for sanity's sake...
Vars= var('A B EE F II J RR T')
eq1 = A*EE-B^2-B*F+EE^2==1
eq4 = A*II-B*J+II^2+RR^2==-1/2
eq5 = A*RR-B*T+2*RR*II==0
eq6 = B*II-EE*J+II*J+RR*T==0
eq8 = -B*RR+EE*T-RR*J-II*T==0
eq9 = EE*II-F*J+J^2+T^2==1/2
eq11 = -EE*RR+F*T-2*T*J==0
eq12 = II^2-RR^2-J^2+T^2==-1
Sys = [eq1,eq4,eq5,eq6,eq8,eq9,eq11,eq12]
# Build an equivalent polynomial system
# Ring
R1 = PolynomialRing(QQbar, len(Vars), "u")
R1.inject_variables()
# Conversion dictionary
D = dict(zip(Vars, R1.gens()))
# Polynomial system
PSys = [R1((u.lhs()-u.rhs()).subs(D)) for u in Sys]
# Try to solve
J1 = R1.ideal(PSys)
# Check
print(J1.dimension())
prints
Defining u0, u1, u2, u3, u4, u5, u6, u7
-1
According to J1.dimension?
: If the ideal is the total ring, the dimension is -1 by convention.
No bloody solution…
And, BTW :
sage: mathematica("Sys = {%s}"%", ".join([u._mathematica_init_() for u in Sys]))
{-B^2 + A*EE + EE^2 - B*F == 1, A*II + II^2 - B*J + RR^2 == -1/2,
A*RR + 2*II*RR - B*T == 0, B*II - EE*J + II*J + RR*T == 0,
-(B*RR) - J*RR + EE*T - II*T == 0, EE*II - F*J + J^2 + T^2 == 1/2,
-(EE*RR) + F*T - 2*J*T == 0, II^2 - J^2 - RR^2 + T^2 == -1}
sage: mathematica("Vars = {%s}"%", ".join([u._mathematica_init_() for u in Vars]))
{A, B, EE, F, II, J, RR, T}
sage: mathematica("Reduce[Sys, Vars]")
False
HTH,