# estimated SE of estimated heritability
# Visscher & Goddard (2015), https://doi.org/10.1534/genetics.114.171017
#
# lambda_i = eigenvalues of kinship matrix
# a = sum[ (lam_i-1)^2 / (1 + h^2(lam_i - 1))^2 ]
# b = sum[ (lam_i - 1) / (1 + h^2(lam_i - 1)) ]
# N = sample size
#
# var(h_hat^2) = 2 / (a - b^2/N)
se_herit <-
function(pheno, kinship)
{
h2 <- as.numeric(est_herit(pheno, kinship))
d <- decomp_kinship(kinship)
lam <- d$values
a <- sapply(h2, function(hsq) sum( (lam-1)^2 / (1 + hsq*(lam-1))^2 ) )
b <- sapply(h2, function(hsq) sum( (lam-1) / (1 + hsq*(lam-1)) ) )
n <- length(lam)
setNames( sqrt(2 / (a - b^2/n)), colnames(pheno) )
}