Macquarie University in Sydney, Australia is using EMOTIV technology to introduce students to research methods in an exciting way, letting them get hands on with the latest in neurotechnology. Image copyright Marcus Ockenden.
Since its founding in 2011, EMOTIV has continued to lead innovation in wireless EEG, developing solutions for a wide variety of applications, including scientific and consumer research, product innovation and workplace wellness, as well as powering a global network of developers and citizen scientist who have created ingenious and inspiring and enabling solutions.
Background: Previous work has validated consumer-grade electroencephalography (EEG) systems for use in research. Systems in this class are cost-effective and easy to set up and can facilitate neuroscience outside of the laboratory. The aim of the current study was to determine if a new consumer-grade system, the Emotiv EPOC Saline Flex, was capable of capturing research-quality data.
Method: The Emotiv system was used simultaneously with a research-grade EEG system, Neuroscan Synamps2, to collect EEG data across 16 channels during five well-established paradigms: (1) a mismatch negativity (MMN) paradigm that involved a passive listening task in which rare deviant (1,500 Hz) tones were interspersed amongst frequent standard tones (1,000 Hz), with instructions to ignore the tones while watching a silent movie; (2) a P300 paradigm that involved an active listening task in which participants were asked to count rare deviant tones presented amongst frequent standard tones; (3) an N170 paradigm in which participants were shown images of faces and watches and asked to indicate whether the images were upright or inverted; (4) a steady-state visual evoked potential (SSVEP) paradigm in which participants passively viewed a flickering screen (15 Hz) for 2 min; and (5) a resting state paradigm in which participants sat quietly with their eyes open and then closed for 3 min each.
Conclusions: The saline version of the Emotiv EPOC Flex captures data similar to that of a research-grade EEG system. It can be used to measure reliable auditory and visual research-quality ERPs. In addition, it can index SSVEP signatures and is sensitive to changes in alpha oscillations.
The original EPOC has been used in research and shown to deliver acceptable quality EEG for research purposes.[8] In particular, independent research groups at Macquarie University and Flinders University reported that it has comparable signal quality compared to other research-level devices.[9][10]
In 2013, the company redesigned and released Emotiv EPOC+, a wireless, 14-channel mobile EEG system to target professional use in research and industrial applications with upgraded electronics including 9-axis inertial sensors, Bluetooth Smart and an improved power source.[13]
In 2013, Emotiv Inc. released EPOC+, which is a research-oriented wireless headset that records 14-channel EEG. Unlike conventional EEG systems that use sticky gels, it uses saline based wet sensors. There are two reference sensors at P3 and P4 locations. The EPOC+ measures both EEG and 9-axis motion data. Data is transmitted wirelessly through Bluetooth.[16]
Emotiv provides free companion app called Insight App[17] for users to monitor their emotions. There are also pay-to-download games such as Arena,[18] which allows users to experience mental commands. EMOTIV provides a two-tier SDK for the EPOC: Community and Premium versions. The EMOTIV EPOC research & developer community has grown to over 70,000 people and spans globally[19]
The Research Edition SDK is a single user license for independent researchers (individuals, companies or incorporated entities that had a turnover less than US$100,000 in their last fiscal year), wishing to conduct EEG research leveraging the Emotiv EPOC technology. The license is registered to the individual and is not transferable. The resulting applications, whether free or commercial will be distributed exclusively through our online application store.
The Research Edition SDK includes a research headset: a 14 channel (plus CMS/DRL references, P3/P4 locations) high resolution, neuro-signal acquisition and processing wireless neuroheadset. Channel names based on the International 10-20 locations are: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4.
Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children.
Genevieve McArthur is an Academic Editor for PeerJ. Katharine Glenn works for MultiLit, a literacy instruction enterprise which is not a competing interest to the current research. None of the other authors have competing interests.
This research was supported by an ARC Centre of Excellence Grant [CE110001021] and an NHMRC equipment grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Although this low-cost headset is able to record EEG data in a satisfying manner, it should only be chosen for non critical applications such as games, communication systems, etc. For rehabilitation or prosthesis control, this lack of reliability may lead to serious consequences. For research purposes, the medical system should be chosen except if a lot of trials are available or when the Signal-to-Noise Ratio is high. This also suggests that the design of a specific low-cost EEG recording system for critical applications and research is still required.
Since its beginning, EEG-based non-invasive Brain-Computer Interfaces (BCI) have mainly targeted disabled people thanks to plenty of different applications [1]. Communication and control are some of them, notably by allowing to control a mouse, to use a web browser or to spell words just by thought. Other main research areas are the study of motor substitution or motor rehabilitation whose main applications are hand grasping [2] and wheelchair control [3]. Finally, for healthy end-users, BCIs have also been used to augment interactivity in games by using multimodality from the Electroencephalography (EEG) signals and the standard control [4, 5].
Based on a SSVEP BCI in [11], the researchers showed that the Emotiv Epoc headset provides decreased performance compared to an ActiCap system with 8 channels located over the occipital area under sitting conditions. Given the advantage of placing all the electrodes around the region of interest for the SSVEP paradigm, the conclusion of underperformance is misleading as far as this experiment can not show the true potential of the headset. Indeed, the previous experiment mostly compares the ability of the devices to record EEG at the right place for a given BCI paradigm instead of their intrinsic performance. One should keep in mind that electrodes could be reorganized according to the final goal as performed in [8]. However, it gives an indication that the Emotiv Epoc headset is not dedicated to all the available BCI paradigms. In [12], a comparative study with a g.tec device was initiated also showing worse results for the Emotiv Epoc headset. On four sitting subjects, they obtained an underperformance of around 10%, which is coherent with [13]. However, only four common electrodes were used and four subjects were evaluated without considering motion and real life applications.
The ANT device is provided with the ASA software. It is composed of several main tools: pre-processing, Event-Related Potential analysis (ERP), source reconstruction using inverse models and time-frequency analysis. All these aspects allow more advanced users, typically researchers/physicians to deeply study the brain signals.
As applied in [24], although our design follows a repeated measure analysis of variance (ANOVA) for each performance measure [25, 26], the omnibus F test was not performed. Actually, the omnibus ANOVA F test is not a necessary condition to control family-wise error rate (FWER) whatever the applied post-hoc tests [26, 27]. In this case, the degrees of freedom are spent for somehow useless statistical tests, i.e. tests that do not really correspond to the research question. Furthermore, omnibus F test might show no significance while some of the underlying t-tests are significant leading to a decrease of power and an overall more conservative test. The important information to remind is that researchers can not continue running different statistical analyses until they obtain the results they desire as FWER quickly inflates.
The Emotiv Epoc headset and the ANT device can additionally be compared on other aspects: usability, robustness, cleaning, price, comfort, intrusiveness. In terms of usability, the Emotiv Epoc headset provides a much more user-friendly framework. First, the software user interface is handy and does not require a strong learning. This is much more adapted for end-users than the ANT environment, which was basically designed for researchers and physicians. Then, the headset is easy to place and it can be performed without any exterior assistance whereas the ANT device requires more training and some help at the beginning. However, the positioning of the Emotiv Epoc is somehow imprecise if a specific care is taken, which is typically the case for end-users. This could lead to potential decrease of performance. Although not perfect, this drawback is mitigated in the medical device by the EEG cap. Robustness is a major concern about the Emotiv headset. Indeed, the hardware is basically made of plastics and low-cost components, which results in a fragile headset whereas the ANT device is made of robust textile and cables and the electrodes cupules are made of high quality plastic. In the Emotiv headset, the plastic-based screw thread can easily break up if a particular attention is not brought during each experiment. In case makeshift repairs are not possible, a new headset has to be bought. Moreover, the electrode metallic parts are quickly oxidized even if cleaned at the end of each experiment as shown in Figure 9. After a while, they appear to produce less good signals (during this experiment, all the Emotiv headset electrodes were non oxidized). Moreover, the moss part of all the electrodes is degrading with time and has to be considered as a consumable. All these problems do not happen with the ANT device, which obviously leads to a higher lifespan for the latter system. Thus, the Emotiv headset also requires higher relative operating and maintenance costs. Regarding the cleaning issues, the ANT system has a strong disadvantage. Due to the gel used to decrease the electrode impedance, the subject needs to wash his hair after the experiment. This is not required with the low-cost system as electrode impedance is lowered by a saline liquid. Price is obviously the strongest commercial argument of the Emotiv device. This headset is able to reach satisfying results for an at least 40 times less expensive solution than a medical device. In terms of comfort, people usually reports feeling some pain after one hour of wearing, which is undoubtedly not the case for medical devices. On average, the ANT cap was considered as much more comfortable. Finally, in terms of intrusiveness, the Emotiv Epoc headset was much more broadly accepted. Subjects particularly like the wireless connection (although connection losses may arise especially in closed area) and the design of the low-cost device. However, the ANT device was not designed for ambulatory applications; this latter argument should disappear if a specific ambulatory design were available.
0aad45d008