FFT of large 3D arrays, memory issue

3 views
Skip to first unread message

Luis Perdigao

unread,
Sep 14, 2021, 9:50:49 AMSep 14
to reikna
Dear all,

I have recently been trying Reikna to perform FFT and deconvolution algorithms using OpenCL.

It works really well however I met a problem with GPU memory usage. I hope you can help.

I am getting a memory error. I wonder if there is a way to overcome this limitation, please.

`
import numpy as np
import reikna.cluda as cluda
from reikna.fft import FFT

api = cluda.ocl_api()
thr = api.Thread.create()

a = np.random.rand(60,1026,1544) #my data has this size
a_cmplx = a.astype(np.complex64)
a_cmplx_dev = thr.to_device(a_cmplx)

fft_gpu = FFT(a_cmplx)
cfft_gpu = fft_gpu.compile(thr)

res_dev = thr.array(a_cmplx.shape, np.complex64)

cfft_gpu(res_dev , a_cmplx_dev)
#Throws error 
# MemoryError: clEnqueueNDRangeKernel failed: MEM_OBJECT_ALLOCATION_FAILURE
# ...
`

Task manager shows that the only 0.8GB of GPU RAM (4GB) is being used out of 4GB total available, T600 Nvidia.

Any help is appreciated.

Regards
Luis
Reply all
Reply to author
Forward
0 new messages