Thecomplex numbers also form a real vector space of dimension two, with 1 , i \displaystyle \1,i\ as a standard basis. This standard basis makes the complex numbers a Cartesian plane, called the complex plane. This allows a geometric interpretation of the complex numbers and their operations, and conversely some geometric objects and operations can be expressed in terms of complex numbers. For example, the real numbers form the real line, which is pictured as the horizontal axis of the complex plane, while real multiples of i \displaystyle i are the vertical axis. A complex number can also be defined by its geometric polar coordinates: the radius is called the absolute value of the complex number, while the angle from the positive real axis is called the argument of the complex number. The complex numbers of absolute value one form the unit circle. Adding a fixed complex number to all complex numbers defines a translation in the complex plane, and multiplying by a fixed complex number is a similarity centered at the origin (dilating by the absolute value, and rotating by the argument). The operation of complex conjugation is the reflection symmetry with respect to the real axis.
The addition can be geometrically visualized as follows: the sum of two complex numbers a and b, interpreted as points in the complex plane, is the point obtained by building a parallelogram from the three vertices O, and the points of the arrows labeled a and b (provided that they are not on a line). Equivalently, calling these points A, B, respectively and the fourth point of the parallelogram X the triangles OAB and XBA are congruent.
With this definition of multiplication and addition, familiar rules for the arithmetic of rational or real numbers continue to hold for complex numbers. More precisely, the distributive property, the commutative properties (of addition and multiplication) hold. Therefore, the complex numbers form an algebraic structure known as a field, the same way as the rational or real numbers do.[10]
Because of this fact, C \displaystyle \mathbb C is called an algebraically closed field. It is a cornerstone of various applications of complex numbers, as is detailed further below. There are various proofs of this theorem, by either analytic methods such as Liouville's theorem, or topological ones such as the winding number, or a proof combining Galois theory and the fact that any real polynomial of odd degree has at least one real root.
The solution in radicals (without trigonometric functions) of a general cubic equation, when all three of its roots are real numbers, contains the square roots of negative numbers, a situation that cannot be rectified by factoring aided by the rational root test, if the cubic is irreducible; this is the so-called casus irreducibilis ("irreducible case"). This conundrum led Italian mathematician Gerolamo Cardano to conceive of complex numbers in around 1545 in his Ars Magna,[17] though his understanding was rudimentary; moreover, he later described complex numbers as being "as subtle as they are useless".[18] Cardano did use imaginary numbers, but described using them as "mental torture."[19] This was prior to the use of the graphical complex plane. Cardano and other Italian mathematicians, notably Scipione del Ferro, in the 1500s created an algorithm for solving cubic equations which generally had one real solution and two solutions containing an imaginary number. Because they ignored the answers with the imaginary numbers, Cardano found them useless.[20]
Work on the problem of general polynomials ultimately led to the fundamental theorem of algebra, which shows that with complex numbers, a solution exists to every polynomial equation of degree one or higher. Complex numbers thus form an algebraically closed field, where any polynomial equation has a root.
Many mathematicians contributed to the development of complex numbers. The rules for addition, subtraction, multiplication, and root extraction of complex numbers were developed by the Italian mathematician Rafael Bombelli.[21] A more abstract formalism for the complex numbers was further developed by the Irish mathematician William Rowan Hamilton, who extended this abstraction to the theory of quaternions.[22]
The impetus to study complex numbers as a topic in itself first arose in the 16th century when algebraic solutions for the roots of cubic and quartic polynomials were discovered by Italian mathematicians (Niccol Fontana Tartaglia and Gerolamo Cardano). It was soon realized (but proved much later)[25] that these formulas, even if one were interested only in real solutions, sometimes required the manipulation of square roots of negative numbers. In fact, it was proved later that the use of complex numbers is unavoidable when all three roots are real and distinct.[c] However, the general formula can still be used in this case, with some care to deal with the ambiguity resulting from the existence of three cubic roots for nonzero complex numbers. Rafael Bombelli was the first to address explicitly these seemingly paradoxical solutions of cubic equations and developed the rules for complex arithmetic, trying to resolve these issues.
... sometimes only imaginary, that is one can imagine as many as I said in each equation, but sometimes there exists no quantity that matches that which we imagine.
[... quelquefois seulement imaginaires c'est--dire que l'on peut toujours en imaginer autant que j'ai dit en chaque quation, mais qu'il n'y a quelquefois aucune quantit qui corresponde celle qu'on imagine.]
In the 18th century complex numbers gained wider use, as it was noticed that formal manipulation of complex expressions could be used to simplify calculations involving trigonometric functions. For instance, in 1730 Abraham de Moivre noted that the identities relating trigonometric functions of an integer multiple of an angle to powers of trigonometric functions of that angle could be re-expressed by the following de Moivre's formula:
In the beginning of the 19th century, other mathematicians discovered independently the geometrical representation of the complex numbers: Bue,[34][35] Mourey,[36] Warren,[37][38][39] Franais and his brother, Bellavitis.[40][41]
The English mathematician G.H. Hardy remarked that Gauss was the first mathematician to use complex numbers in "a really confident and scientific way" although mathematicians such as Norwegian Niels Henrik Abel and Carl Gustav Jacob Jacobi were necessarily using them routinely before Gauss published his 1831 treatise.[42]
Later classical writers on the general theory include Richard Dedekind, Otto Hlder, Felix Klein, Henri Poincar, Hermann Schwarz, Karl Weierstrass and many others. Important work (including a systematization) in complex multivariate calculus has been started at beginning of the 20th century. Important results have been achieved by Wilhelm Wirtinger in 1927.
While the above low-level definitions, including the addition and multiplication, accurately describes the complex numbers, there are other, equivalent approaches that reveal the abstract algebraic structure of the complex numbers more immediately.
This function is surjective since every complex number can be obtained in such a way: the evaluation of a linear polynomial a + b X \displaystyle a+bX at X = i \displaystyle X=i is a + b i \displaystyle a+bi . However, the evaluation of polynomial X 2 + 1 \displaystyle X^2+1 at i is 0, since i 2 + 1 = 0. \displaystyle i^2+1=0. This polynomial is irreducible, i.e., cannot be written as a product of two linear polynomials. Basic facts of abstract algebra then imply that the kernel of the above map is an ideal generated by this polynomial, and that the quotient by this ideal is a field, and that there is an isomorphism
The study of functions of a complex variable is known as complex analysis and has enormous practical use in applied mathematics as well as in other branches of mathematics. Often, the most natural proofs for statements in real analysis or even number theory employ techniques from complex analysis (see prime number theorem for an example).
Unlike real functions, which are commonly represented as two-dimensional graphs, complex functions have four-dimensional graphs and may usefully be illustrated by color-coding a three-dimensional graph to suggest four dimensions, or by animating the complex function's dynamic transformation of the complex plane.
Complex numbers, unlike real numbers, do not in general satisfy the unmodified power and logarithm identities, particularly when navely treated as single-valued functions; see failure of power and logarithm identities. For example, they do not satisfy a b c = ( a b ) c . \displaystyle a^bc=\left(a^b\right)^c. Both sides of the equation are multivalued by the definition of complex exponentiation given here, and the values on the left are a subset of those on the right.
The series defining the real trigonometric functions sine and cosine, as well as the hyperbolic functions sinh and cosh, also carry over to complex arguments without change. For the other trigonometric and hyperbolic functions, such as tangent, things are slightly more complicated, as the defining series do not converge for all complex values. Therefore, one must define them either in terms of sine, cosine and exponential, or, equivalently, by using the method of analytic continuation.
Complex numbers have applications in many scientific areas, including signal processing, control theory, electromagnetism, fluid dynamics, quantum mechanics, cartography, and vibration analysis. Some of these applications are described below.
Complex conjugation is also employed in inversive geometry, a branch of geometry studying reflections more general than ones about a line. In the network analysis of electrical circuits, the complex conjugate is used in finding the equivalent impedance when the maximum power transfer theorem is looked for.
3a8082e126