Get Rael-Science on Twitter: https://twitter.com/rael_science
By University of Science and Technology of China June 13, 2024
High-fidelity quantum teleportation has been achieved by research team using a new hybrid entanglement technique that counters environmental noise, with a success rate nearing 90%. Credit: SciTechDaily.com
Scientists have advanced quantum teleportation by mitigating noise interference through a novel method involving hybrid entanglement, achieving close to 90% fidelity in teleporting quantum states, which could significantly enhance secure quantum communication.
A research team led by Academician Guangcan Guo from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), in collaboration with the research team at the University of Turku, Finland, successfully overcame environmental noise to achieve high-fidelity quantum teleportation by utilizing multipartite hybrid entanglement. Their findings were published recently in the journal Science Advances.
Quantum teleportation serves as a crucial protocol in quantum communication, enabling the remote transmission of unknown quantum states through the utilization of quantum entanglement. However, due to the fragile nature of quantum entanglement, quantum teleportation is highly susceptible to noise. Achieving high-fidelity quantum teleportation in noisy environments has been a pressing challenge.
Previously, to address the decoherence issue of open quantum systems in a noisy environment, the research team devised a comprehensive method for regulating photon polarization and frequency, leveraging sophisticated optical path design and programmable spatial light modulators. This approach enabled them to create a fully controllable phase decoherence quantum simulator and achieve quantum teleportation that surpasses noise, utilizing nonlocal memory effects.
However, nonlocal memory effects require stringent quantum resources such as environmental entanglement, which are not generally attainable. Building on these results, the current work presents a more versatile quantum teleportation technique that effectively mitigates environmental noise.
Employing the fully controllable phase decoherence quantum simulator, the researchers introduced specific phase modulations into the environment to prepare a dual-photon polarization-frequency hybrid entangled initial state. Subsequently, these photons were distributed to two separate user terminals, where each underwent decoherence evolution.
Ultimately, through classical communication, the researchers executed suitable unitary operations on the retrieved quantum bits to restore the transmitted quantum state, achieving a measured fidelity approaching 90%. The polarization states never violated Bell’s inequality, indicating quantum teleportation based on hidden quantum nonlocality.
This method offers a new way to overcome environmental noise, distinct from conventional techniques such as dynamic decoupling and decoherence-free subspaces, and enhances the understanding of quantum nonlocality.
Reference: “Overcoming noise in quantum
teleportation with multipartite hybrid
entanglement” by Zhao-Di Liu, Olli Siltanen, Tom
Kuusela, Rui-Heng Miao, Chen-Xi Ning, Chuan-Feng
Li, Guang-Can Guo and Jyrki Piilo, 1 May 2024, Science
Advances.
DOI:
10.1126/sciadv.adj3435