Test
subject in an EEG booth. Credit: Henrike Jungeblut /
Luis Ahrens When the brain is under pressure, certain neural signals begin to move in sync - much like a well-rehearsed orchestra. A new study from Johannes Gutenberg University Mainz (JGU) is the first to show how flexibly this neural synchrony adjusts to different situations and that this dynamic coordination is closely linked to cognitive abilities. "Specific signals in the midfrontal brain region are better synchronized in people with higher cognitive ability - especially during demanding phases of reasoning," explained Professor Anna-Lena Schubert from JGU's Institute of Psychology, lead author of the study recently published in the Journal of Experimental Psychology: General.
The 148 participants in the study, aged between 18 and 60, first completed tests assessing memory and intelligence before their brain activity was recorded using electroencephalography (EEG). This method measures tiny electrical signals in the brain using electrodes placed on the scalp and is a well-established technique for gaining precise insights into cognitive processes. During EEG recording, participants completed three mentally demanding tasks designed to assess cognitive control.
The researchers were interested in the participants' ability to flexibly shift between changing rules, which is an essential aspect of intelligent information processing. For example, participants had to press a button to decide whether a number was even or odd, and moments later whether it was greater or less than five. Each switch of rules required rapid adjustment of mental strategies - a process that allowed researchers to closely observe how the brain's networks coordinate in real time.
As a result, individuals with higher cognitive abilities showed especially strong synchronization of theta waves during crucial moments, particularly when making decisions. Their brains were better at sustaining purposeful thought when it mattered most. "People with stronger midfrontal theta connectivity are often better at maintaining focus and tuning out distractions, be it that your phone buzzes while you're working or that you intend to read a book in a busy train station," explained Schubert.
A flexible rhythm in the brain
"Potential applications such as brain-based training tools or diagnostics are still a long way off," emphasized Schubert. "But our study offers important groundwork for understanding how intelligence functions at a neural level." A follow-up study, now seeking participants aged 40 and older from the Rhine-Main region, will explore which biological and cognitive factors further support this kind of efficient brain coordination and the role of additional cognitive abilities, such as processing speed and working memory.
Story Source:
Materials provided by Johannes Gutenberg Universitaet Mainz. Note: Content may be edited for style and length.
Journal Reference: