I'm trying to construct build a model where I evaluate 2 outcomes (y1 and y2) at an individual level and use random effects (a spatially correlated one (v_i) and a spatially correlated one u_i)
So in short, I have these 2 models (which have a different likelihood):
y1ij ~ intercept1 + u_1i + v_1i + w_ij
y2ij ~ intercept2 + u_2i + v_2i + w_ij
formula1 = (y1 ~ 1 +
f(region.unstruct,model="iid", param=c(0.5,0.008)) +
f(region.struct,model="besag", graph=graph.loc, param=c(0.5,0.008)))
mod.pred1 <- inla(formula1, family = "binomial", data = cc.data, Ntrials=1,
control.predictor=list(compute=TRUE,link=1),
control.compute=list(config = TRUE),
control.fixed=list(expand.factor.strategy="inla"))
formula2 = y2~ 1 +
f(region.unstruct,model="iid", param=c(0.5,0.008)) +
f(region.struct,model="besag", graph=graph.loc, param=c(0.5,0.008)))
mod.pred2 <- inla(formula2, family = "binomial", data = cc.data, Ntrials=1,
control.predictor=list(compute=TRUE,link=1),
control.compute=list(config = TRUE),
control.fixed=list(expand.factor.strategy="inla"))