Dear INLA-users,
I am trying to estimate rates of choices in a space according to this text (
https://inla.r-inla-download.org/r-inla.org/doc/vignettes/multinomial.pdf). In this estimation, I and my collaborator are confused with the role of "phi" in page 2 and 8 of the above text.
The question is: Are these "phi" necessary for Poisson trick? Or are they necessary only for improper models?
When I test models without phi, they work well for besagproper and besagproper2 and do not well for besag, besag2 and SPDE.
When I test a model with phi, it works well for besag and besag2 and does not for besagproper and besagproper2 (not yet tested on SPDE).
The tested models are like these:
Models without phi:
formula<-Y~ -1 + f(alt1, model="besagproper")
models[[1]]<-inla(formula, family = "poisson", data = data1, control.compute=list(config=TRUE,cpo=TRUE),control.predictor = list(compute=TRUE))
formula<-Y~ -1 + f(alt2, model="besagproper")
models[[2]]<-inla(formula, family = "poisson", data = data2, control.compute=list(config=TRUE,cpo=TRUE),control.predictor = list(compute=TRUE))
formula<-Y~ -1 + f(alt3, model="besagproper")
models[[3]]<-inla(formula, family = "poisson", data = data3, control.compute=list(config=TRUE,cpo=TRUE),control.predictor = list(compute=TRUE))Model with phi:
formula<-Y~ -1 + f(alt1, model="besag") + f(alt2, model="besag") + f(alt3, model="besag") + f(phi,initial=-10,fixed=T)
model<-inla(formula, family = "poisson", data = data, control.compute=list(config=TRUE,cpo=TRUE),control.predictor = list(compute=TRUE), control.inla = list(int.strategy = "eb"))The goals of these estimation are such as alt1/(alt1+alt2+al3) and their CIs.
Thank you for your time and consideration.
Satoshi Aoki